Unified video retrieval system supporting similarity retrieval

M. Yoon, Yongik Yoon, Kio-Chung Kim
{"title":"Unified video retrieval system supporting similarity retrieval","authors":"M. Yoon, Yongik Yoon, Kio-Chung Kim","doi":"10.1109/DEXA.1999.795298","DOIUrl":null,"url":null,"abstract":"We present the unified video retrieval system (UVRS) which provides the content-based query integrating feature-based queries and annotation-based queries of indefinite formed and high-volume video data. It also supports approximate query results by using query reformulation in case the result of the query does not exist. The UVRS divides video into video documents, sequences, scenes and objects, and involves the three layered object-oriented metadata model (TOMM) to model metadata. TOMM is composed of a raw-data layer for a physical video stream, a metadata layer to support annotation-based retrieval, feature-based retrieval, and similarity retrieval and a semantic layer to reform the query. Based on this model, we present a video query language which makes possible annotation-based queries, feature-based queries based on color, spatial, temporal and spatio-temporal correlation and similar queries, and consider a video query processor (VQP). For similarity queries on a given scene or object, we present a formula expressing the degree of similarity based on color, spatial, and temporal order. If there is no query result, then it will be carry out a query reformulation process which finds possible attributes to relax the query and automatically reforms the query by using knowledge from the semantic layer. We carry out performance evaluation of similarity using recall and precision.","PeriodicalId":276867,"journal":{"name":"Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.1999.795298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present the unified video retrieval system (UVRS) which provides the content-based query integrating feature-based queries and annotation-based queries of indefinite formed and high-volume video data. It also supports approximate query results by using query reformulation in case the result of the query does not exist. The UVRS divides video into video documents, sequences, scenes and objects, and involves the three layered object-oriented metadata model (TOMM) to model metadata. TOMM is composed of a raw-data layer for a physical video stream, a metadata layer to support annotation-based retrieval, feature-based retrieval, and similarity retrieval and a semantic layer to reform the query. Based on this model, we present a video query language which makes possible annotation-based queries, feature-based queries based on color, spatial, temporal and spatio-temporal correlation and similar queries, and consider a video query processor (VQP). For similarity queries on a given scene or object, we present a formula expressing the degree of similarity based on color, spatial, and temporal order. If there is no query result, then it will be carry out a query reformulation process which finds possible attributes to relax the query and automatically reforms the query by using knowledge from the semantic layer. We carry out performance evaluation of similarity using recall and precision.
支持相似度检索的统一视频检索系统
提出了统一视频检索系统(UVRS),该系统将基于特征的查询和基于注释的查询结合起来,为不确定格式和大容量视频数据提供基于内容的查询。在查询结果不存在的情况下,它还通过使用查询重新表述来支持近似查询结果。UVRS将视频分为视频文档、视频序列、视频场景和视频对象,采用三层面向对象的元数据模型(TOMM)对元数据进行建模。TOMM由用于物理视频流的原始数据层、支持基于注释的检索、基于特征的检索和相似性检索的元数据层和用于修改查询的语义层组成。在此模型的基础上,提出了一种视频查询语言,实现了基于注释的查询、基于颜色的特征查询、空间、时间和时空相关查询以及相似查询,并考虑了视频查询处理器(VQP)。对于给定场景或对象的相似性查询,我们提出了一个基于颜色、空间和时间顺序表示相似性程度的公式。如果没有查询结果,则进行查询重新表述过程,寻找可能的属性来放松查询,并利用语义层的知识自动修改查询。我们使用查全率和查准率对相似度进行性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信