Finite variance unbiased estimation of stochastic differential equations

Ankush Agarwal, E. Gobet
{"title":"Finite variance unbiased estimation of stochastic differential equations","authors":"Ankush Agarwal, E. Gobet","doi":"10.1109/WSC.2017.8247930","DOIUrl":null,"url":null,"abstract":"We develop a new unbiased estimation method for Lipschitz continuous functions of multi-dimensional stochastic differential equations with Lipschitz continuous coefficients. This method provides a finite variance estimator based on a probabilistic representation which is similar to the recent representations obtained through the parametrix method and recursive application of the automatic differentiation formula. Our approach relies on appropriate change of variables to carefully handle the singular integrands appearing in the iterated integrals of the probabilistic representation. It results in a scheme with randomized intermediate times where the number of intermediate times has a Pareto distribution.","PeriodicalId":145780,"journal":{"name":"2017 Winter Simulation Conference (WSC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2017.8247930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We develop a new unbiased estimation method for Lipschitz continuous functions of multi-dimensional stochastic differential equations with Lipschitz continuous coefficients. This method provides a finite variance estimator based on a probabilistic representation which is similar to the recent representations obtained through the parametrix method and recursive application of the automatic differentiation formula. Our approach relies on appropriate change of variables to carefully handle the singular integrands appearing in the iterated integrals of the probabilistic representation. It results in a scheme with randomized intermediate times where the number of intermediate times has a Pareto distribution.
随机微分方程的有限方差无偏估计
提出了一种具有Lipschitz连续系数的多维随机微分方程的Lipschitz连续函数的无偏估计方法。该方法提供了一种基于概率表示的有限方差估计,这种概率表示类似于最近通过参数法和递归应用自动微分公式获得的表示。我们的方法依赖于适当的变量变化来仔细处理概率表示的迭代积分中出现的奇异积分。它得到一个中间时间随机化的方案,中间时间的数量符合帕累托分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信