Improvement on Agglomerative Hierarchical Clustering Algorithm Based on Tree Data Structure with Bidirectional Approach

Hussain Mohammad Yousef Abu Dalbouh, N. Norwawi
{"title":"Improvement on Agglomerative Hierarchical Clustering Algorithm Based on Tree Data Structure with Bidirectional Approach","authors":"Hussain Mohammad Yousef Abu Dalbouh, N. Norwawi","doi":"10.1109/ISMS.2012.13","DOIUrl":null,"url":null,"abstract":"Hierarchical clustering algorithms take an input of pair wise data-item similarities and output a hierarchy of the data-items. This paper presents bi-directional agglomerative hierarchical clustering algorithm to create a bottom-up hierarchy, by iteratively merging the closest pair of data-items into one cluster. The result is a rooted AVL tree. The n leafs correspond to input data-items that need to n/2 or n/2+1 steps to merge into one cluster, correspond to groupings of items in coarser granularities climbing towards the root. As observed from the time complexity and number of steps needed to cluster all data points into one cluster perspective, the performance of the bi-directional agglomerative algorithm using tree data structure is better than the current agglomerative algorithms. Analysis on the experimental results indicates that the improved algorithm has a higher efficiency than previous methods.","PeriodicalId":200002,"journal":{"name":"2012 Third International Conference on Intelligent Systems Modelling and Simulation","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Intelligent Systems Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMS.2012.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Hierarchical clustering algorithms take an input of pair wise data-item similarities and output a hierarchy of the data-items. This paper presents bi-directional agglomerative hierarchical clustering algorithm to create a bottom-up hierarchy, by iteratively merging the closest pair of data-items into one cluster. The result is a rooted AVL tree. The n leafs correspond to input data-items that need to n/2 or n/2+1 steps to merge into one cluster, correspond to groupings of items in coarser granularities climbing towards the root. As observed from the time complexity and number of steps needed to cluster all data points into one cluster perspective, the performance of the bi-directional agglomerative algorithm using tree data structure is better than the current agglomerative algorithms. Analysis on the experimental results indicates that the improved algorithm has a higher efficiency than previous methods.
基于树状数据结构的双向聚类改进
分层聚类算法采用对数据项相似性的输入,并输出数据项的层次结构。本文提出了一种双向聚合层次聚类算法,通过迭代地将最接近的数据项对合并到一个聚类中来创建自下而上的层次结构。结果是一个有根的AVL树。n个叶对应于需要n/2或n/2+1步才能合并成一个簇的输入数据项,对应于向根爬升的粗粒度项的分组。从将所有数据点聚到一个聚类的时间复杂度和所需的步数来看,采用树状数据结构的双向聚类算法的性能优于目前的聚类算法。实验结果分析表明,改进后的算法比以前的方法具有更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信