Application of artificial neural networks modelling to spray impingement heat transfer

M.M. Awais, M. A. Aamir, A. Aamir
{"title":"Application of artificial neural networks modelling to spray impingement heat transfer","authors":"M.M. Awais, M. A. Aamir, A. Aamir","doi":"10.1109/INMIC.2001.995352","DOIUrl":null,"url":null,"abstract":"Artificial neural networks (ANN) models were developed and applied to water spray cooling heat flux predictions. The model was applied to all the three regimes of heat transfer, namely nucleate boiling (where surface temperature is less than the one at critical heat flux), transition (where the surface temperature is less than the Leidenfrost temperature) and the film boiling (where the wall temperature is greater than the Leidenfrost temperature). The ANN model is well trained and proves to be an alternative numerical modelling technique to computational fluid dynamics (CFD) with numerical predictions comparable to the CFD predictions, but in real time mode.","PeriodicalId":286459,"journal":{"name":"Proceedings. IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century.","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2001.995352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial neural networks (ANN) models were developed and applied to water spray cooling heat flux predictions. The model was applied to all the three regimes of heat transfer, namely nucleate boiling (where surface temperature is less than the one at critical heat flux), transition (where the surface temperature is less than the Leidenfrost temperature) and the film boiling (where the wall temperature is greater than the Leidenfrost temperature). The ANN model is well trained and proves to be an alternative numerical modelling technique to computational fluid dynamics (CFD) with numerical predictions comparable to the CFD predictions, but in real time mode.
人工神经网络建模在喷雾冲击传热中的应用
建立了人工神经网络模型,并将其应用于水雾冷却热流密度预测。该模型适用于所有三种传热模式,即成核沸腾(表面温度低于临界热流密度)、过渡(表面温度低于莱顿弗罗斯特温度)和膜沸腾(壁面温度高于莱顿弗罗斯特温度)。人工神经网络模型训练有素,是计算流体力学(CFD)的一种替代数值建模技术,其数值预测可与CFD预测相媲美,但在实时模式下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信