M. Herbordt, Josh Model, Y. Gu, Bharat Sukhwani, T. Court
{"title":"Single Pass, BLAST-Like, Approximate String Matching on FPGAs","authors":"M. Herbordt, Josh Model, Y. Gu, Bharat Sukhwani, T. Court","doi":"10.1109/FCCM.2006.64","DOIUrl":null,"url":null,"abstract":"Approximate string matching is fundamental to bioinformatics, and has been the subject of numerous FPGA acceleration studies. We address issues with respect to FPGA implementations of both BLAST- and dynamic programming- (DP) based methods. Our primary contributions are two new algorithms for emulating the seeding and extension phases of BLAST. These operate in a single pass through a database at streaming rate (110 Maa/sec on a VP70 for query sizes up to 600 and 170 Maa/sec on a Virtex4 for query sizes up to 1024), and with no preprocessing other than loading the query string. Further, they use very high sensitivity with no slowdown. While current DP-based methods also operate at streaming rate, generating results can be cumbersome. We address this with a new structure for data extraction. We present results from several implementations","PeriodicalId":123057,"journal":{"name":"2006 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2006.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76
Abstract
Approximate string matching is fundamental to bioinformatics, and has been the subject of numerous FPGA acceleration studies. We address issues with respect to FPGA implementations of both BLAST- and dynamic programming- (DP) based methods. Our primary contributions are two new algorithms for emulating the seeding and extension phases of BLAST. These operate in a single pass through a database at streaming rate (110 Maa/sec on a VP70 for query sizes up to 600 and 170 Maa/sec on a Virtex4 for query sizes up to 1024), and with no preprocessing other than loading the query string. Further, they use very high sensitivity with no slowdown. While current DP-based methods also operate at streaming rate, generating results can be cumbersome. We address this with a new structure for data extraction. We present results from several implementations