Near Optimal Neural Network-based Output Feedback Control of Affine Nonlinear Discrete-Time Systems

Qinmin Yang, S. Jagannathan
{"title":"Near Optimal Neural Network-based Output Feedback Control of Affine Nonlinear Discrete-Time Systems","authors":"Qinmin Yang, S. Jagannathan","doi":"10.1109/ISIC.2007.4450950","DOIUrl":null,"url":null,"abstract":"In this paper, a novel online reinforcement learning neural network (NN)-based optimal output feedback controller, referred to as adaptive critic controller, is proposed for affine nonlinear discrete-time systems, to deliver a desired tracking performance. The adaptive critic design consist of three entities, an observer to estimate the system states, an action network that produces optimal control input and a critic that evaluates the performance of the action network. The critic is termed adaptive as it adapts itself to output the optimal cost-to-go function which is based on the standard Bellman equation. By using the Lyapunov approach, the uniformly ultimate boundedness (UUB) of the estimation and tracking errors and weight estimates is demonstrated. The effectiveness of the controller is evaluated for the task of nanomanipulation in a simulation environment.","PeriodicalId":184867,"journal":{"name":"2007 IEEE 22nd International Symposium on Intelligent Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 22nd International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2007.4450950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a novel online reinforcement learning neural network (NN)-based optimal output feedback controller, referred to as adaptive critic controller, is proposed for affine nonlinear discrete-time systems, to deliver a desired tracking performance. The adaptive critic design consist of three entities, an observer to estimate the system states, an action network that produces optimal control input and a critic that evaluates the performance of the action network. The critic is termed adaptive as it adapts itself to output the optimal cost-to-go function which is based on the standard Bellman equation. By using the Lyapunov approach, the uniformly ultimate boundedness (UUB) of the estimation and tracking errors and weight estimates is demonstrated. The effectiveness of the controller is evaluated for the task of nanomanipulation in a simulation environment.
仿射非线性离散系统的近最优神经网络输出反馈控制
本文针对仿射非线性离散系统,提出了一种新的基于在线强化学习神经网络(NN)的最优输出反馈控制器,称为自适应临界控制器,以获得理想的跟踪性能。自适应评论家设计由三个实体组成:一个估计系统状态的观察者,一个产生最优控制输入的行动网络和一个评估行动网络性能的评论家。评论家被称为自适应,因为它自适应输出基于标准Bellman方程的最优成本函数。利用李雅普诺夫方法,证明了估计、跟踪误差和权值估计的一致最终有界性。在仿真环境中,对该控制器在纳米操作任务中的有效性进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信