A Lightweight DNN for ECG Image Classification

Amrita Rana, Kyung Ki Kim
{"title":"A Lightweight DNN for ECG Image Classification","authors":"Amrita Rana, Kyung Ki Kim","doi":"10.1109/ISOCC50952.2020.9332968","DOIUrl":null,"url":null,"abstract":"Recent advances in the field of AI have proved that deep neural networks perform and recognize arrhythmia better than cardiologists when trained with a large chunk of data. However, despite the better performance, deep neural networks demand more resources. Therefore, in this paper, a new deep neural network using low resources has been proposed while maintaining high performance, and it is enhanced with a depthwise separable convolution layer for Electrocardiogram (ECG) classification. The algorithm is performed on the Physikalisch-Technische Bundesanstalt (PTB) diagnostic dataset taken from Physionet consisting of two classes: Myocardial Infarction (MI) and Normal (N). Our simulation results show that the proposed lightweight DNN provides high performance with almost the same accuracy as conventional SquezeNets.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9332968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recent advances in the field of AI have proved that deep neural networks perform and recognize arrhythmia better than cardiologists when trained with a large chunk of data. However, despite the better performance, deep neural networks demand more resources. Therefore, in this paper, a new deep neural network using low resources has been proposed while maintaining high performance, and it is enhanced with a depthwise separable convolution layer for Electrocardiogram (ECG) classification. The algorithm is performed on the Physikalisch-Technische Bundesanstalt (PTB) diagnostic dataset taken from Physionet consisting of two classes: Myocardial Infarction (MI) and Normal (N). Our simulation results show that the proposed lightweight DNN provides high performance with almost the same accuracy as conventional SquezeNets.
一种用于心电图像分类的轻量级深度神经网络
人工智能领域的最新进展已经证明,深度神经网络在接受大量数据训练时,比心脏病专家表现和识别心律失常更好。然而,尽管性能更好,深度神经网络需要更多的资源。因此,本文提出了一种低资源、高性能的新型深度神经网络,并通过深度可分卷积层对其进行增强,用于心电图分类。该算法在取自Physionet的Physikalisch-Technische Bundesanstalt (PTB)诊断数据集上执行,该数据集由两类组成:心肌梗死(MI)和正常(N)。我们的模拟结果表明,所提出的轻量级DNN提供了高性能,几乎与传统的squezenet具有相同的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信