{"title":"High-throughput hash-based online traffic classification engines on FPGA","authors":"Vaibhav R. Gandhi, Yun Qu, V. Prasanna","doi":"10.1109/ReConFig.2014.7032530","DOIUrl":null,"url":null,"abstract":"Traffic classification is used to perform important network management tasks such as flow prioritization and traffic shaping/pricing. Machine learning techniques such as the C4.5 algorithm can be used to perform traffic classification with very high levels of accuracy; however, realizing high-performance online traffic classification engine is still challenging. In this paper, we propose a high-throughput architecture for online traffic classification on FPGA. We convert the C4.5 decision-tree into multiple hash tables. We construct a pipelined architecture consisting of multiple processing elements; each hash table is searched in a processing element independently. The throughput is further increased by using multiple pipelines in parallel. To evaluate the performance of our architecture, we implement it on a state-of-the-art FPGA. Post-place-and-route results show that, for a typical 128-leaf decision-tree used for online traffic classification, our classification engine sustains a throughput of 1654 Million Classifications Per Second (MCPS). Our architecture sustains high throughput even if the number of leaves in the decision-tree is scaled up to 1K. Compared to existing online traffic classification engines on various platforms, we achieve at least 3.5× speedup with respect to throughput.","PeriodicalId":137331,"journal":{"name":"2014 International Conference on ReConFigurable Computing and FPGAs (ReConFig14)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on ReConFigurable Computing and FPGAs (ReConFig14)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2014.7032530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Traffic classification is used to perform important network management tasks such as flow prioritization and traffic shaping/pricing. Machine learning techniques such as the C4.5 algorithm can be used to perform traffic classification with very high levels of accuracy; however, realizing high-performance online traffic classification engine is still challenging. In this paper, we propose a high-throughput architecture for online traffic classification on FPGA. We convert the C4.5 decision-tree into multiple hash tables. We construct a pipelined architecture consisting of multiple processing elements; each hash table is searched in a processing element independently. The throughput is further increased by using multiple pipelines in parallel. To evaluate the performance of our architecture, we implement it on a state-of-the-art FPGA. Post-place-and-route results show that, for a typical 128-leaf decision-tree used for online traffic classification, our classification engine sustains a throughput of 1654 Million Classifications Per Second (MCPS). Our architecture sustains high throughput even if the number of leaves in the decision-tree is scaled up to 1K. Compared to existing online traffic classification engines on various platforms, we achieve at least 3.5× speedup with respect to throughput.