Real-Time Object Detection with Tensorflow Model Using Edge Computing Architecture

Mahiban Lindsay N, Alla Eswara Rao, Madaka Pavan Kalyan
{"title":"Real-Time Object Detection with Tensorflow Model Using Edge Computing Architecture","authors":"Mahiban Lindsay N, Alla Eswara Rao, Madaka Pavan Kalyan","doi":"10.1109/ICSSS54381.2022.9782169","DOIUrl":null,"url":null,"abstract":"This paper presents the capturing of objects using Wi-Fi enabled modular esp32 camera and processes the captured stream of data using machine learning and computer vision techniques, then sends the processed data to the cloud, there are major cloud providers in the market who occupied more than 80% of the global public market the cloud providers are Google Cloud, Amazon AWS, Microsoft Azure. Google Cloud Platform (GCP) is been our primary choice because of its good documentation availability, The Cloud IoT-Core Gateway, as well as a serverless cloud layer to store all of the data. The cloud functions help to trigger the notifications to the users when the cameras detect what we have trained the model. The Edge computing project uses an ESP32 With cameras as a device listener and a raspberry pi as an edge server which has an image classifier model trained with TensorFlow.","PeriodicalId":186440,"journal":{"name":"2022 8th International Conference on Smart Structures and Systems (ICSSS)","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Smart Structures and Systems (ICSSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSS54381.2022.9782169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents the capturing of objects using Wi-Fi enabled modular esp32 camera and processes the captured stream of data using machine learning and computer vision techniques, then sends the processed data to the cloud, there are major cloud providers in the market who occupied more than 80% of the global public market the cloud providers are Google Cloud, Amazon AWS, Microsoft Azure. Google Cloud Platform (GCP) is been our primary choice because of its good documentation availability, The Cloud IoT-Core Gateway, as well as a serverless cloud layer to store all of the data. The cloud functions help to trigger the notifications to the users when the cameras detect what we have trained the model. The Edge computing project uses an ESP32 With cameras as a device listener and a raspberry pi as an edge server which has an image classifier model trained with TensorFlow.
基于边缘计算架构的Tensorflow模型实时目标检测
本文介绍了使用支持Wi-Fi的模块化esp32相机捕获对象,并使用机器学习和计算机视觉技术处理捕获的数据流,然后将处理后的数据发送到云端,市场上有主要的云提供商,他们占据了全球公共市场的80%以上,云提供商是谷歌云,亚马逊AWS,微软Azure。谷歌云平台(GCP)是我们的首选,因为它有很好的文档可用性,云物联网核心网关,以及一个无服务器的云层来存储所有数据。当相机检测到我们训练的模型时,云功能有助于触发通知给用户。边缘计算项目使用带有摄像头的ESP32作为设备监听器,使用树莓派作为边缘服务器,该服务器具有使用TensorFlow训练的图像分类器模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信