Monotonicity of semiflows generated by cooperative delayed full-range CNNs

M. Di Marco, M. Forti, M. Grazzini, L. Pancioni
{"title":"Monotonicity of semiflows generated by cooperative delayed full-range CNNs","authors":"M. Di Marco, M. Forti, M. Grazzini, L. Pancioni","doi":"10.1109/CNNA.2012.6331406","DOIUrl":null,"url":null,"abstract":"The paper considers the full-range (FR) model of cellular neural networks (CNNs) with ideal hard-limiter non-linearities that limit the allowable range of the neuron state variables. It is also supposed that there is a concentrated delay (D) in the neuron interconnections. Due to the presence of multivalued nonlinearities the D-FRCNN model is mathematically described by a retarded differential inclusion. The main result is a rigorous proof that, in the case of nonsymmetric cooperative (nonnegative) interconnections, and delayed interconnections, the semiflow generated by D-FRCNNs is monotone, and that monotonicity implies some basic restrictions on the long-term behavior of the solutions. The result is compared with recent results in the literature on semiflows generated by cooperative standard CNNs, with and without delays.","PeriodicalId":387536,"journal":{"name":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","volume":"57 6 Suppl 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2012.6331406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The paper considers the full-range (FR) model of cellular neural networks (CNNs) with ideal hard-limiter non-linearities that limit the allowable range of the neuron state variables. It is also supposed that there is a concentrated delay (D) in the neuron interconnections. Due to the presence of multivalued nonlinearities the D-FRCNN model is mathematically described by a retarded differential inclusion. The main result is a rigorous proof that, in the case of nonsymmetric cooperative (nonnegative) interconnections, and delayed interconnections, the semiflow generated by D-FRCNNs is monotone, and that monotonicity implies some basic restrictions on the long-term behavior of the solutions. The result is compared with recent results in the literature on semiflows generated by cooperative standard CNNs, with and without delays.
协作延迟全范围cnn生成半流的单调性
本文考虑具有理想硬限制非线性的细胞神经网络(cnn)全量程(FR)模型,该模型限制了神经元状态变量的允许范围。我们还假设在神经元互连中存在集中延迟(D)。由于多值非线性的存在,D-FRCNN模型在数学上用延迟微分包含来描述。主要结果是一个严格的证明,在非对称合作(非负)互连和延迟互连的情况下,d - frcnn产生的半流是单调的,并且单调性意味着对解的长期行为的一些基本限制。该结果与最近文献中关于有延迟和无延迟的合作标准cnn产生的半流的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信