Jorge A. Caripidis Troccola, Sweta Gupta, Maxence Carvalho, S. B. Venkatakrishnan, P. Raj, J. Volakis
{"title":"Laminate-Embedded Multimodal Energy Harvester for Multilevel Power Supply","authors":"Jorge A. Caripidis Troccola, Sweta Gupta, Maxence Carvalho, S. B. Venkatakrishnan, P. Raj, J. Volakis","doi":"10.1109/3D-PEIM55914.2023.10052323","DOIUrl":null,"url":null,"abstract":"A unique, multimodal 3D power packaging concept for simultaneous energy harvesting from RF, Solar, and TEG is proposed and demonstrated. The key innovations are five-fold: 1) 3D vertical stacking with substrate-embedding of RF and solar-TEG module assembly to achieve high power from TEG, while also reducing the overall module thickness. 2) High-gain linear antenna arrays for RF power harvesting. 3) Remateable clamped fuzz-button assembly from the module to the panel for easy removal and re-assembly by the operator, giving modularity and reparability to the stack. 4) Simultaneous 48 V and 1.5 V harvesting. By simultaneously harvesting multi-voltage domains, the power supply architecture can be simplified by selectively eliminating certain voltage converters. 5) Glass encasing for increased thermal gradient and output power. The 3D and embedded technology are scalable to both high power grid and low power wearable and IoT applications, integrated with other harvesting modes from RF, making it an innovative platform for power harvesting.","PeriodicalId":106578,"journal":{"name":"2023 Fourth International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM)","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fourth International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3D-PEIM55914.2023.10052323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A unique, multimodal 3D power packaging concept for simultaneous energy harvesting from RF, Solar, and TEG is proposed and demonstrated. The key innovations are five-fold: 1) 3D vertical stacking with substrate-embedding of RF and solar-TEG module assembly to achieve high power from TEG, while also reducing the overall module thickness. 2) High-gain linear antenna arrays for RF power harvesting. 3) Remateable clamped fuzz-button assembly from the module to the panel for easy removal and re-assembly by the operator, giving modularity and reparability to the stack. 4) Simultaneous 48 V and 1.5 V harvesting. By simultaneously harvesting multi-voltage domains, the power supply architecture can be simplified by selectively eliminating certain voltage converters. 5) Glass encasing for increased thermal gradient and output power. The 3D and embedded technology are scalable to both high power grid and low power wearable and IoT applications, integrated with other harvesting modes from RF, making it an innovative platform for power harvesting.