The Diophantine Approximation of Roots of Positive Integers

C. Osgood
{"title":"The Diophantine Approximation of Roots of Positive Integers","authors":"C. Osgood","doi":"10.6028/JRES.074B.022","DOIUrl":null,"url":null,"abstract":"Rece nt ly Schinzel [4] I and Dave nport [1] have each obtain ed a res u lt of the followin g so rt : Let a be a real algeb raic numbe r of degree r ~ 2. Le t s be a positive real numbe r large r than s( r), whe re for Daven port r > s( r ) = tr+ 0(1 ) > t r while for Schinzel s( r) = 3(r/2) 1/2 Th e n th ere ex is ts an e ffectively co mputable positive integer qo(a , s) s uc h th at , with a t mos t one exce p· tion, every pair of relatively prim e integers p and q with q ~ qo (a) sa tis fi es th e in equ ality","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"404 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1970-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.074B.022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Rece nt ly Schinzel [4] I and Dave nport [1] have each obtain ed a res u lt of the followin g so rt : Let a be a real algeb raic numbe r of degree r ~ 2. Le t s be a positive real numbe r large r than s( r), whe re for Daven port r > s( r ) = tr+ 0(1 ) > t r while for Schinzel s( r) = 3(r/2) 1/2 Th e n th ere ex is ts an e ffectively co mputable positive integer qo(a , s) s uc h th at , with a t mos t one exce p· tion, every pair of relatively prim e integers p and q with q ~ qo (a) sa tis fi es th e in equ ality
正整数根的丢番图近似
Rece nt - ly Schinzel [4] I和Dave nport[1]分别得到了以下条件中的一个:设a是一个实数r,次数为r ~ 2。t s是一个正真的numbe大r比(r),当重新作祈祷端口r > s (r) = tr + 0 (1) > t r而Schinzel s (r) = 3 (r / 2) 1/2 Th e n之前交货是ts e ffectively co mputable正整数问:加州大学h (a, s)年代Th, t mos一过量p·,每一对相对拘谨的e整数p和q q ~问:(a) sa tis fi es Th e实施专业化的装备
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信