Time Series Prediction of Driving Motion Scenarios Using Fuzzy Neural Networks: * Motion Signal Prediction Using FNNs

Mohammad Reza Chalak Qazani, Houshyar Asadi, Mohammed Al-Ashmori, Shady M. K. Mohamed, C. Lim, S. Nahavandi
{"title":"Time Series Prediction of Driving Motion Scenarios Using Fuzzy Neural Networks: * Motion Signal Prediction Using FNNs","authors":"Mohammad Reza Chalak Qazani, Houshyar Asadi, Mohammed Al-Ashmori, Shady M. K. Mohamed, C. Lim, S. Nahavandi","doi":"10.1109/ICM46511.2021.9385693","DOIUrl":null,"url":null,"abstract":"Motion signals can be reproduced using a simulation-based motion platform (SBMP) and virtual reality. In this respect, time series prediction of the driving motion scenarios can enhance the quality of the regenerated motion signals with the motion cueing algorithm (MCA). Specifically, the MCA is employed to regenerate the motion signals for a SBMP with respect to the workspace limitations. The use of the feedforward neural network (NN) produces inaccurate predictions pertaining to the driving motion scenarios. In this paper, an interval type-2 fuzzy neural network (FNN) is proposed to predict the driving motion scenarios. As type-1 FNN is not able to represent the uncertainty in information, a Type-2 Quantum (T2Q) FNN is used to handle the undefined indexes with consideration of uncertain jump positions. The T2QFNN model can identify the overlaps between classes and adjust the fuzzy parameters automatically, including fuzzy rules as a linear combination of the exogenous input variables. The simulation results indicate that T2QFNN is able to yield lower prediction error and shorter learning time as compared with those from the feedforward NN and type-1 FNN models.","PeriodicalId":373423,"journal":{"name":"2021 IEEE International Conference on Mechatronics (ICM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM46511.2021.9385693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Motion signals can be reproduced using a simulation-based motion platform (SBMP) and virtual reality. In this respect, time series prediction of the driving motion scenarios can enhance the quality of the regenerated motion signals with the motion cueing algorithm (MCA). Specifically, the MCA is employed to regenerate the motion signals for a SBMP with respect to the workspace limitations. The use of the feedforward neural network (NN) produces inaccurate predictions pertaining to the driving motion scenarios. In this paper, an interval type-2 fuzzy neural network (FNN) is proposed to predict the driving motion scenarios. As type-1 FNN is not able to represent the uncertainty in information, a Type-2 Quantum (T2Q) FNN is used to handle the undefined indexes with consideration of uncertain jump positions. The T2QFNN model can identify the overlaps between classes and adjust the fuzzy parameters automatically, including fuzzy rules as a linear combination of the exogenous input variables. The simulation results indicate that T2QFNN is able to yield lower prediction error and shorter learning time as compared with those from the feedforward NN and type-1 FNN models.
使用模糊神经网络的驾驶运动场景时间序列预测:*使用fnn的运动信号预测
运动信号可以使用基于仿真的运动平台(SBMP)和虚拟现实再现。在这方面,驾驶运动场景的时间序列预测可以提高运动线索算法(MCA)再生的运动信号的质量。具体地说,MCA用于根据工作空间的限制重新生成SBMP的运动信号。前馈神经网络(NN)的使用会产生与驾驶运动场景有关的不准确预测。本文提出了一种区间2型模糊神经网络(FNN)来预测驾驶运动场景。由于1型FNN无法表示信息中的不确定性,因此采用2型量子(T2Q) FNN处理考虑跳跃位置不确定的未定义指标。T2QFNN模型可以识别类间的重叠并自动调整模糊参数,将模糊规则作为外生输入变量的线性组合。仿真结果表明,与前馈神经网络和type-1神经网络模型相比,T2QFNN的预测误差更小,学习时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信