LTE Downlink channel estimation based on Artificial Neural Network and complex Support Vector Machine Regression

A. Charrada, A. Samet
{"title":"LTE Downlink channel estimation based on Artificial Neural Network and complex Support Vector Machine Regression","authors":"A. Charrada, A. Samet","doi":"10.1109/CEIT.2016.7929031","DOIUrl":null,"url":null,"abstract":"In this paper we assess the performance of Support Vector Machine Regression (SVR) based on Radial Basis Function (RBF) and Artificial Neural Network (ANN) based on Scaled Conjugate Gradient Backpropagation (SCG) algorithms to estimate the channel variations using the reference signal structure standardized for LTE Downlink system. Complex SVR and ANN where applied to estimate real channel environment such as vehicular A channel defined by the International Telecommunications Union (ITU). In order to evaluate the capabilities of the designed channel estimators, we provide performances of SVR and ANN, which are compared to Least Squares (LS) and Decision Feedback (DF). The simulation results show that the complex SVR has a better accuracy than other estimation techniques.","PeriodicalId":355001,"journal":{"name":"2016 4th International Conference on Control Engineering & Information Technology (CEIT)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Conference on Control Engineering & Information Technology (CEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIT.2016.7929031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we assess the performance of Support Vector Machine Regression (SVR) based on Radial Basis Function (RBF) and Artificial Neural Network (ANN) based on Scaled Conjugate Gradient Backpropagation (SCG) algorithms to estimate the channel variations using the reference signal structure standardized for LTE Downlink system. Complex SVR and ANN where applied to estimate real channel environment such as vehicular A channel defined by the International Telecommunications Union (ITU). In order to evaluate the capabilities of the designed channel estimators, we provide performances of SVR and ANN, which are compared to Least Squares (LS) and Decision Feedback (DF). The simulation results show that the complex SVR has a better accuracy than other estimation techniques.
基于人工神经网络和复杂支持向量机回归的LTE下行信道估计
在本文中,我们评估了基于径向基函数(RBF)的支持向量机回归(SVR)和基于缩放共轭梯度反向传播(SCG)算法的人工神经网络(ANN)在使用LTE下行系统标准化的参考信号结构估计信道变化方面的性能。将复SVR和ANN应用于国际电信联盟(ITU)定义的车载A信道等真实信道环境的估计。为了评估所设计的信道估计器的性能,我们提供了SVR和ANN的性能,并将其与最小二乘(LS)和决策反馈(DF)进行了比较。仿真结果表明,该方法具有较好的估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信