Detecting Abnormalities in Heart Sounds

Muhammed Telceken, Y. Kutlu
{"title":"Detecting Abnormalities in Heart Sounds","authors":"Muhammed Telceken, Y. Kutlu","doi":"10.54856/jiswa.202112180","DOIUrl":null,"url":null,"abstract":"Heart sounds are important data that reflect the state of the heart. It is possible to prevent larger problems that may occur with early diagnosis of abnormalities in heart sounds. Therefore, in this study, the detection of abnormalities in heart sounds has been studied. In order to detect abnormalities in heart sounds, the heartbeat-sounds data set obtained free of charge from the kaggle.com website was examined. Mel frequency cepstral coefficients (MFCCs) were used in the selection of the characteristics of the sounds. Parameters such as the number of filters to be applied for MFCCs, the number of attributes to be extracted are examined separately with different values. The classification performance of heart sounds with feature matrices extracted in different parameters of MFCCs with K-nearest neighbor algorithm was investigated. The classification performance of different feature extractions was compared and the best case was tried to be determined. Two different records that make up the data set were examined separately as normal and abnormal. Then, the new data set obtained by combining the two records was examined as normal and abnormal.","PeriodicalId":112412,"journal":{"name":"Journal of Intelligent Systems with Applications","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54856/jiswa.202112180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Heart sounds are important data that reflect the state of the heart. It is possible to prevent larger problems that may occur with early diagnosis of abnormalities in heart sounds. Therefore, in this study, the detection of abnormalities in heart sounds has been studied. In order to detect abnormalities in heart sounds, the heartbeat-sounds data set obtained free of charge from the kaggle.com website was examined. Mel frequency cepstral coefficients (MFCCs) were used in the selection of the characteristics of the sounds. Parameters such as the number of filters to be applied for MFCCs, the number of attributes to be extracted are examined separately with different values. The classification performance of heart sounds with feature matrices extracted in different parameters of MFCCs with K-nearest neighbor algorithm was investigated. The classification performance of different feature extractions was compared and the best case was tried to be determined. Two different records that make up the data set were examined separately as normal and abnormal. Then, the new data set obtained by combining the two records was examined as normal and abnormal.
检测心音异常
心音是反映心脏状态的重要数据。早期诊断心音异常可以预防可能发生的更大问题。因此,本研究对心音异常的检测进行了研究。为了检测心音的异常,检查了从kaggle.com网站免费获得的心音数据集。使用Mel频率倒谱系数(MFCCs)来选择声音的特征。对mfc应用的过滤器数量、要提取的属性数量等参数分别使用不同的值进行检查。研究了用k近邻算法提取不同参数的mfccc特征矩阵对心音的分类性能。比较了不同特征提取方法的分类性能,并尝试确定最佳情况。组成数据集的两个不同的记录分别作为正常和异常进行检查。然后,将两个记录合并得到的新数据集进行正常和异常检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信