P. Bahoumina, H. Hallil, J. Lachaud, D. Rebière, C. Dejous, A. Abdelghani, K. Frigui, S. Bila, D. Baillargeat, Q. Zhang, P. Coquet, C. Paragua, E. Pichonat, H. Happy
{"title":"Chemical gas sensor based on a novel capacitive microwave flexible transducer and composite polymer carbon nanomaterials","authors":"P. Bahoumina, H. Hallil, J. Lachaud, D. Rebière, C. Dejous, A. Abdelghani, K. Frigui, S. Bila, D. Baillargeat, Q. Zhang, P. Coquet, C. Paragua, E. Pichonat, H. Happy","doi":"10.1109/DTIP.2017.7984509","DOIUrl":null,"url":null,"abstract":"This study presents the results on the feasibility of a resonant planar chemical capacitive sensor in the microwave frequency range suitable for gas detection and for wireless communications applications. The objective is to develop a low cost ultra-sensitive sensor that can be integrated into a real time multi-sensing platform. The first demonstrators target the detection of harmful gases such as volatile organic compounds (VOCs) to monitor environmental pollution.","PeriodicalId":354534,"journal":{"name":"2017 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTIP.2017.7984509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This study presents the results on the feasibility of a resonant planar chemical capacitive sensor in the microwave frequency range suitable for gas detection and for wireless communications applications. The objective is to develop a low cost ultra-sensitive sensor that can be integrated into a real time multi-sensing platform. The first demonstrators target the detection of harmful gases such as volatile organic compounds (VOCs) to monitor environmental pollution.