Non-Parametric Modeling of Motion Control Systems Using an Hybrid MODE-NARX Algorithm

I. Tijani
{"title":"Non-Parametric Modeling of Motion Control Systems Using an Hybrid MODE-NARX Algorithm","authors":"I. Tijani","doi":"10.1109/ICCSCE47578.2019.9068546","DOIUrl":null,"url":null,"abstract":"In practical motion control systems, high fidelity model of the system is fundamental for design, analysis and implementation of control algorithm. Linear Time Invariant (LTI) model approaches provide simplify approach to classical controller design and simulation. However, such approach usually leads to poor real-time performance on the actual system. On the other hand, obtaining nonlinear parametric model has been an arduous task. This paper presents non-parametric modeling approach using an optimized Nonlinear Autoregressive with eXogenous inputs network (NARX-network) with Multiobjective Differential Evolution (MODE). The hybrid algorithm, MODE-NARX addresses challenges of network parameters determination in the conventional NARX network, while providing optimal performance. A laboratory scale motion control systems is used to evaluate the performance of the algorithm. Based on simulation and comparative results analysis performed the proposed hybrid technique outperformed the common well-known PEM-ARMA model with up to 80% better accuracy, and better generalization performance across varying datasets.","PeriodicalId":221890,"journal":{"name":"2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE47578.2019.9068546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In practical motion control systems, high fidelity model of the system is fundamental for design, analysis and implementation of control algorithm. Linear Time Invariant (LTI) model approaches provide simplify approach to classical controller design and simulation. However, such approach usually leads to poor real-time performance on the actual system. On the other hand, obtaining nonlinear parametric model has been an arduous task. This paper presents non-parametric modeling approach using an optimized Nonlinear Autoregressive with eXogenous inputs network (NARX-network) with Multiobjective Differential Evolution (MODE). The hybrid algorithm, MODE-NARX addresses challenges of network parameters determination in the conventional NARX network, while providing optimal performance. A laboratory scale motion control systems is used to evaluate the performance of the algorithm. Based on simulation and comparative results analysis performed the proposed hybrid technique outperformed the common well-known PEM-ARMA model with up to 80% better accuracy, and better generalization performance across varying datasets.
基于混合MODE-NARX算法的运动控制系统非参数建模
在实际的运动控制系统中,系统的高保真度模型是控制算法设计、分析和实现的基础。线性时不变(LTI)模型方法为经典控制器的设计和仿真提供了简化的方法。然而,这种方法通常会导致实际系统的实时性差。另一方面,获取非线性参数模型是一项艰巨的任务。本文提出了一种基于多目标差分进化(MODE)的优化非线性自回归外生输入网络(narx -网络)的非参数建模方法。MODE-NARX混合算法在提供最佳性能的同时,解决了传统NARX网络中网络参数确定的挑战。以实验室规模的运动控制系统为例,对算法的性能进行了评价。基于仿真和对比结果分析,所提出的混合技术优于常见的PEM-ARMA模型,准确率提高了80%,并且在不同数据集上具有更好的泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信