Information spaces for mobile robots

Benjamín Tovar, A. Yershova, J. O’Kane, S. LaValle
{"title":"Information spaces for mobile robots","authors":"Benjamín Tovar, A. Yershova, J. O’Kane, S. LaValle","doi":"10.1109/ROMOCO.2005.201394","DOIUrl":null,"url":null,"abstract":"Planning with sensing uncertainty is central to robotics. Sensor limitations often prevent accurate state estimation of the robot. Two general approaches can be taken for solving robotics tasks given sensing uncertainty. The first approach is to estimate the state and to solve the given task using the estimate as the real state. However, estimation of the state may sometimes be harder than solving the original task. The other approach is to avoid estimation of the state, which can be achieved by defining the information space, the space of all histories of actions and sensing observations of a robot system. Considering information spaces brings better understanding of problems involving uncertainty, and also allows finding better solutions to such problems. In this paper we give a brief description of the information space framework, followed by its use in some robotic tasks.","PeriodicalId":142727,"journal":{"name":"Proceedings of the Fifth International Workshop on Robot Motion and Control, 2005. RoMoCo '05.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Workshop on Robot Motion and Control, 2005. RoMoCo '05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMOCO.2005.201394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Planning with sensing uncertainty is central to robotics. Sensor limitations often prevent accurate state estimation of the robot. Two general approaches can be taken for solving robotics tasks given sensing uncertainty. The first approach is to estimate the state and to solve the given task using the estimate as the real state. However, estimation of the state may sometimes be harder than solving the original task. The other approach is to avoid estimation of the state, which can be achieved by defining the information space, the space of all histories of actions and sensing observations of a robot system. Considering information spaces brings better understanding of problems involving uncertainty, and also allows finding better solutions to such problems. In this paper we give a brief description of the information space framework, followed by its use in some robotic tasks.
移动机器人的信息空间
具有感知不确定性的规划是机器人技术的核心。传感器的限制常常妨碍对机器人进行准确的状态估计。对于给定传感不确定性的机器人任务,可以采用两种一般的解决方法。第一种方法是估计状态,并使用估计作为实际状态来解决给定的任务。然而,对状态的估计有时可能比解决原始任务更难。另一种方法是避免状态估计,这可以通过定义信息空间来实现,即机器人系统的所有动作历史和感知观察的空间。考虑信息空间可以更好地理解涉及不确定性的问题,也可以为这些问题找到更好的解决方案。在本文中,我们简要描述了信息空间框架,然后介绍了它在一些机器人任务中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信