Application of fractional calculus to distinguish left ventricular hypertrophy with normal ECG

Srijan Sengupta, U. Ghosh, S. Sarkar, S. Das
{"title":"Application of fractional calculus to distinguish left ventricular hypertrophy with normal ECG","authors":"Srijan Sengupta, U. Ghosh, S. Sarkar, S. Das","doi":"10.1109/RAIT.2018.8388969","DOIUrl":null,"url":null,"abstract":"ECG graphs are the rough type of graphs which are continuous everywhere but non-differentiable at some points of PQRST complexes of each leads of ECG. These non-differentiable points cannot be interpreted by usual classical calculus but it can be characterized by fractional calculus. In this paper we have applied fractional calculus to distinguish Left Ventricular Hypertrophic ECG from Normal ECG. To interpret the non-differentiable points we have calculated modified left and right Riemann-Liouville fractional derivatives, corresponding Phase Transition(P.T.) values (i.e. difference between left and right modified R-L fractional derivative), mean and standard deviation of the P.T. values at the non-differentiable points of the considerable ECG leads. From the study we observe that the P.T. values are higher for Left Ventricular Hypertrophy cases compared to the normal ones. In addition for LVH patients mean and standard deviation of the P.T. values of considerable ECG leads are higher than those for normal ECGs. This may be a new approach to study any ECG via fractional calculus.","PeriodicalId":219972,"journal":{"name":"2018 4th International Conference on Recent Advances in Information Technology (RAIT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Recent Advances in Information Technology (RAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAIT.2018.8388969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

ECG graphs are the rough type of graphs which are continuous everywhere but non-differentiable at some points of PQRST complexes of each leads of ECG. These non-differentiable points cannot be interpreted by usual classical calculus but it can be characterized by fractional calculus. In this paper we have applied fractional calculus to distinguish Left Ventricular Hypertrophic ECG from Normal ECG. To interpret the non-differentiable points we have calculated modified left and right Riemann-Liouville fractional derivatives, corresponding Phase Transition(P.T.) values (i.e. difference between left and right modified R-L fractional derivative), mean and standard deviation of the P.T. values at the non-differentiable points of the considerable ECG leads. From the study we observe that the P.T. values are higher for Left Ventricular Hypertrophy cases compared to the normal ones. In addition for LVH patients mean and standard deviation of the P.T. values of considerable ECG leads are higher than those for normal ECGs. This may be a new approach to study any ECG via fractional calculus.
分数阶微积分在左室肥厚与正常心电图鉴别中的应用
心电图是在心电各导联的PQRST复合体的某些点上处处连续但不可微的粗糙型图。这些不可微点不能用通常的经典微积分来解释,但可以用分数阶微积分来表征。本文应用分数阶演算法区分左室肥厚心电图与正常心电图。为了解释不可微点,我们计算了修正左、右Riemann-Liouville分数导数,相应的相变(P.T.)值(即左、右修正R-L分数导数的差值),相当数量的心电导联不可微点的P.T.值的平均值和标准差。从研究中我们观察到左室肥厚患者的pt值高于正常患者。此外,LVH患者相当部分心电图导联的pt值均值和标准差均高于正常心电图。这可能是一种利用分数微积分研究心电图的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信