{"title":"A new parameterizable power macro-model for datapath components","authors":"Gerd von Cölln, L. Kruse, E. Schmidt, W. Nebel","doi":"10.1145/307418.307434","DOIUrl":null,"url":null,"abstract":"We propose a novel power macro-model which is based on the Hamming-distance of two consecutive input vectors and additional information on the module structure. The model is parameterizable in terms of input bit-widths and can be applied to a wide variety of datapath components. The good trade-off between estimation accuracy, model complexity and flexibility makes the model attractive for power analysis and optimization tasks on a high level of abstraction. Furthermore, a new approach is presented, that allows one to calculate the average Hamming-distance distribution of an input data stream. It is demonstrated, that the application of Hamming-distance distributions, instead of only average values, improves the estimation accuracy for a number of typical DSP-modules and data streams.","PeriodicalId":442382,"journal":{"name":"Design, Automation and Test in Europe Conference and Exhibition, 1999. Proceedings (Cat. No. PR00078)","volume":"35 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design, Automation and Test in Europe Conference and Exhibition, 1999. Proceedings (Cat. No. PR00078)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/307418.307434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
We propose a novel power macro-model which is based on the Hamming-distance of two consecutive input vectors and additional information on the module structure. The model is parameterizable in terms of input bit-widths and can be applied to a wide variety of datapath components. The good trade-off between estimation accuracy, model complexity and flexibility makes the model attractive for power analysis and optimization tasks on a high level of abstraction. Furthermore, a new approach is presented, that allows one to calculate the average Hamming-distance distribution of an input data stream. It is demonstrated, that the application of Hamming-distance distributions, instead of only average values, improves the estimation accuracy for a number of typical DSP-modules and data streams.