Random decision forests for automatic brain tumor segmentation on multi-modal MRI images

Adriano Pinto, Sérgio Pereira, H. Dinis, Carlos A. Silva, D. Rasteiro
{"title":"Random decision forests for automatic brain tumor segmentation on multi-modal MRI images","authors":"Adriano Pinto, Sérgio Pereira, H. Dinis, Carlos A. Silva, D. Rasteiro","doi":"10.1109/ENBENG.2015.7088842","DOIUrl":null,"url":null,"abstract":"Brain tumour segmentation from Magnetic Resonance Imaging (MRI) scans have an important role in the early tumour diagnosis and radiotherapy planning. However, MRI images of the brain contain complex characteristics, such as high diversity in tumour appearance and ambiguous tumour boundaries, even when using multi-sequence MRI images. We propose a fully automatic segmentation algorithm based on a Random Decision Forest, using a k-fold cross-validation approach. The extracted features are the intensity complemented with other appearance and context based features. The post-processing phase has a morphological filter to deal with misclassification errors. Our method is capable of detecting the tumour and segmenting the different tumorous tissues of the glioma achieving competitive results.","PeriodicalId":285567,"journal":{"name":"2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENBENG.2015.7088842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Brain tumour segmentation from Magnetic Resonance Imaging (MRI) scans have an important role in the early tumour diagnosis and radiotherapy planning. However, MRI images of the brain contain complex characteristics, such as high diversity in tumour appearance and ambiguous tumour boundaries, even when using multi-sequence MRI images. We propose a fully automatic segmentation algorithm based on a Random Decision Forest, using a k-fold cross-validation approach. The extracted features are the intensity complemented with other appearance and context based features. The post-processing phase has a morphological filter to deal with misclassification errors. Our method is capable of detecting the tumour and segmenting the different tumorous tissues of the glioma achieving competitive results.
基于多模态MRI图像的随机决策森林脑肿瘤自动分割
磁共振成像(MRI)扫描的脑肿瘤分割在肿瘤早期诊断和放疗计划中具有重要作用。然而,大脑的MRI图像包含复杂的特征,例如肿瘤外观的高度多样性和模糊的肿瘤边界,即使使用多序列MRI图像也是如此。我们提出了一种基于随机决策森林的全自动分割算法,使用k-fold交叉验证方法。提取的特征是强度与其他基于外观和上下文的特征的补充。后处理阶段有一个形态学过滤器来处理误分类错误。我们的方法能够检测肿瘤并对胶质瘤的不同肿瘤组织进行分割,从而获得竞争性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信