Intensified regularized discriminant analysis technique

Karthika Veeramani, S. Jaganathan
{"title":"Intensified regularized discriminant analysis technique","authors":"Karthika Veeramani, S. Jaganathan","doi":"10.1109/ICRAIE.2014.6909114","DOIUrl":null,"url":null,"abstract":"Discriminant Analysis is utilised in working out which specific classification, a data pertains to on the basis of its needed features. Linear Discriminant Analysis(LDA) achieves the maximum class separability by projecting high-dimensional data onto a lower dimensional space. However, LDA suffers from small sample size(SSS) problem where the dimensionality of feature vector is very large compared to the number of available training samples. Regularized Discriminant Analysis(RDA) handles SSS problem of LDA with an introduction of regularization parameter(λ) and has the ability to reduce the variance. One important issue of RDA is how to automatically estimate an appropriate regularization parameter. In this paper, we propose a new algorithm to enhance the performance of RDA by effectively estimating an appropriate regularization parameter in order to reduce training time and error rate. Experiments are done using various benchmark datasets to verify the effectiveness of our proposed method with the state-of-the-art-algorithm.","PeriodicalId":355706,"journal":{"name":"International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014)","volume":"55 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAIE.2014.6909114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Discriminant Analysis is utilised in working out which specific classification, a data pertains to on the basis of its needed features. Linear Discriminant Analysis(LDA) achieves the maximum class separability by projecting high-dimensional data onto a lower dimensional space. However, LDA suffers from small sample size(SSS) problem where the dimensionality of feature vector is very large compared to the number of available training samples. Regularized Discriminant Analysis(RDA) handles SSS problem of LDA with an introduction of regularization parameter(λ) and has the ability to reduce the variance. One important issue of RDA is how to automatically estimate an appropriate regularization parameter. In this paper, we propose a new algorithm to enhance the performance of RDA by effectively estimating an appropriate regularization parameter in order to reduce training time and error rate. Experiments are done using various benchmark datasets to verify the effectiveness of our proposed method with the state-of-the-art-algorithm.
强化正则化判别分析技术
判别分析用于根据所需的特征确定数据属于哪个特定的分类。线性判别分析(LDA)通过将高维数据投影到低维空间来实现最大的类可分性。然而,LDA存在小样本问题,即特征向量的维数与可用训练样本的数量相比非常大。正则化判别分析(RDA)通过引入正则化参数(λ)来处理LDA的SSS问题,具有减小方差的能力。RDA的一个重要问题是如何自动估计合适的正则化参数。在本文中,我们提出了一种新的算法,通过有效地估计合适的正则化参数来提高RDA的性能,以减少训练时间和错误率。使用各种基准数据集进行了实验,以验证我们提出的方法与最先进算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信