Power Optimization In A Repeater-Inserted Interconnect Via Geometric Programming

W. Cheung, N. Wong
{"title":"Power Optimization In A Repeater-Inserted Interconnect Via Geometric Programming","authors":"W. Cheung, N. Wong","doi":"10.1145/1165573.1165629","DOIUrl":null,"url":null,"abstract":"We present an innovative geometric programming (GP) approach for minimizing the power dissipation of an interconnect with repeater insertion, subject to delay, bandwidth and area constraints. Repeater sizes and segment lengths are globally optimized in various technology nodes with respect to International Technology Roadmap for Semiconductors (ITRS). Relative power dissipation due to different power components is analyzed. We show that, on average, the power dissipation per unit length can be reduced by over 30% when the timing constraint is relaxed by 5%. The optimum number of repeaters is always given as an integer in our design flow. The relationships between power dissipation and respective design constraints are easily visualized in tradeoff curves. Additional design criteria, such as reliability of the interconnect delay against process variations, are easily incorporated into the optimization","PeriodicalId":119229,"journal":{"name":"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1165573.1165629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present an innovative geometric programming (GP) approach for minimizing the power dissipation of an interconnect with repeater insertion, subject to delay, bandwidth and area constraints. Repeater sizes and segment lengths are globally optimized in various technology nodes with respect to International Technology Roadmap for Semiconductors (ITRS). Relative power dissipation due to different power components is analyzed. We show that, on average, the power dissipation per unit length can be reduced by over 30% when the timing constraint is relaxed by 5%. The optimum number of repeaters is always given as an integer in our design flow. The relationships between power dissipation and respective design constraints are easily visualized in tradeoff curves. Additional design criteria, such as reliability of the interconnect delay against process variations, are easily incorporated into the optimization
基于几何规划的中继器插入互连的功率优化
我们提出了一种创新的几何规划(GP)方法,以最大限度地减少中继器插入互连的功耗,受延迟,带宽和面积限制。根据国际半导体技术路线图(ITRS),在各个技术节点上对中继器的尺寸和段长度进行了全局优化。分析了不同功率元件的相对功耗。我们表明,当时间约束放宽5%时,平均每单位长度的功耗可以降低30%以上。在我们的设计流程中,中继器的最佳数量总是以整数形式给出。功耗与各自设计约束之间的关系很容易在权衡曲线中可视化。额外的设计标准,如互连延迟对工艺变化的可靠性,很容易纳入优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信