Android anomaly detection system using machine learning classification

Harry Kurniawan, Y. Rosmansyah, B. Dabarsyah
{"title":"Android anomaly detection system using machine learning classification","authors":"Harry Kurniawan, Y. Rosmansyah, B. Dabarsyah","doi":"10.1109/ICEEI.2015.7352512","DOIUrl":null,"url":null,"abstract":"Android is one of the most popular open-source smartphone operating system and its access control permission mechanisms cannot detect any malware behavior. In this paper, new software behavior-based anomaly detection system is proposed to detect anomaly caused by malware. It works by analyzing anomalies on power consumption, battery temperature and network traffic data using machine learning classification algorithm. The result shows that this method can detect anomaly with 85.6% accuracy.","PeriodicalId":426454,"journal":{"name":"2015 International Conference on Electrical Engineering and Informatics (ICEEI)","volume":"11 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electrical Engineering and Informatics (ICEEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEI.2015.7352512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Android is one of the most popular open-source smartphone operating system and its access control permission mechanisms cannot detect any malware behavior. In this paper, new software behavior-based anomaly detection system is proposed to detect anomaly caused by malware. It works by analyzing anomalies on power consumption, battery temperature and network traffic data using machine learning classification algorithm. The result shows that this method can detect anomaly with 85.6% accuracy.
Android异常检测系统采用机器学习分类
Android是目前最流行的开源智能手机操作系统之一,其访问控制权限机制无法检测任何恶意软件行为。本文提出了一种新的基于软件行为的异常检测系统,用于检测恶意软件引起的异常。它通过使用机器学习分类算法分析功耗、电池温度和网络流量数据的异常情况。结果表明,该方法检测异常的准确率为85.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信