CNN-based Feature Extraction for Robotic Laser Scanning of Weld Grooves in Tubular T-joints

Øyvind W. Mjølhus, Andrej Cibicik, E. B. Njaastad, O. Egeland
{"title":"CNN-based Feature Extraction for Robotic Laser Scanning of Weld Grooves in Tubular T-joints","authors":"Øyvind W. Mjølhus, Andrej Cibicik, E. B. Njaastad, O. Egeland","doi":"10.1109/IRC55401.2022.00063","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for feature point extraction from scanning data of large tubular T-joints (a subtype of a TKY joint). Extracting such feature points is a vital step for robot path generation in robotic welding. Therefore, fast and reliable feature point extraction is necessary for developing adaptive robotic welding solutions. The algorithm is based on a Convolutional Neural Network (CNN) for detecting feature points in a scanned weld groove, where the scans are done using a laser profile scanner. To facilitate fast and efficient training, we propose a methodology for generating synthetic training data in the computer graphics software Blender using realistic physical properties of objects. Further, an iterative feature point correction procedure is implemented to improve initial feature point results. The algorithm’s performance was validated using a real-world dataset acquired from a large tubular T-joint.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"32 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an algorithm for feature point extraction from scanning data of large tubular T-joints (a subtype of a TKY joint). Extracting such feature points is a vital step for robot path generation in robotic welding. Therefore, fast and reliable feature point extraction is necessary for developing adaptive robotic welding solutions. The algorithm is based on a Convolutional Neural Network (CNN) for detecting feature points in a scanned weld groove, where the scans are done using a laser profile scanner. To facilitate fast and efficient training, we propose a methodology for generating synthetic training data in the computer graphics software Blender using realistic physical properties of objects. Further, an iterative feature point correction procedure is implemented to improve initial feature point results. The algorithm’s performance was validated using a real-world dataset acquired from a large tubular T-joint.
基于cnn的机器人激光扫描管状t型接头焊缝凹槽特征提取
本文提出了一种从大型管状t型接头(TKY接头的一种)的扫描数据中提取特征点的算法。在机器人焊接中,这些特征点的提取是机器人路径生成的关键步骤。因此,快速可靠的特征点提取是开发自适应机器人焊接解决方案的必要条件。该算法基于卷积神经网络(CNN),用于检测扫描焊缝坡口中的特征点,其中扫描使用激光轮廓扫描仪完成。为了促进快速有效的训练,我们提出了一种在计算机图形软件Blender中使用对象的真实物理属性生成合成训练数据的方法。此外,实现了迭代特征点校正程序以改进初始特征点结果。该算法的性能通过从大型管状t型接头获取的真实数据集进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信