Analog circuit optimizer based on computational intelligence techniques

K. Prakobwaitayakit
{"title":"Analog circuit optimizer based on computational intelligence techniques","authors":"K. Prakobwaitayakit","doi":"10.1109/MWSCAS.2004.1354351","DOIUrl":null,"url":null,"abstract":"The computational intelligence techniques for analog circuit optimizer are presented in this paper. This technique uses a diffusion genetic algorithm (DGA) to identify multiple \"good\" solutions from a multiobjective fitness landscape which are tuned using a local hill-climbing algorithm. The DGA together with fast and accurate circuit performance estimator (CPE) based on neuro-computing technology is used to provide a nature niching mechanism that has considerable computational advantages and generate as many \"good\" design solutions as possible. The local hill-climbing algorithm restricts the search in the basin of attraction of a design solution, thus tries to tune the design up-to the sub-optimum by using SPICE to validated the performance parameters of synthesized circuits.","PeriodicalId":185817,"journal":{"name":"The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS '04.","volume":"28 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2004.1354351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The computational intelligence techniques for analog circuit optimizer are presented in this paper. This technique uses a diffusion genetic algorithm (DGA) to identify multiple "good" solutions from a multiobjective fitness landscape which are tuned using a local hill-climbing algorithm. The DGA together with fast and accurate circuit performance estimator (CPE) based on neuro-computing technology is used to provide a nature niching mechanism that has considerable computational advantages and generate as many "good" design solutions as possible. The local hill-climbing algorithm restricts the search in the basin of attraction of a design solution, thus tries to tune the design up-to the sub-optimum by using SPICE to validated the performance parameters of synthesized circuits.
基于计算智能技术的模拟电路优化器
本文介绍了模拟电路优化器的计算智能技术。该技术使用扩散遗传算法(DGA)从多目标适应度景观中识别多个“好”解,并使用局部爬坡算法进行调整。DGA与基于神经计算技术的快速精确电路性能估计器(CPE)相结合,提供了一种具有相当计算优势的自然小生境机制,并产生尽可能多的“好”设计方案。局部爬坡算法将搜索限制在设计解的吸引力范围内,通过SPICE来验证合成电路的性能参数,试图将设计调整到次优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信