On The Contribution of Secondary Holes in Hot-Carrier Degradation – a Compact Physics Modeling Perspective

S. Tyaginov, E. Bury, A. Grill, Z. Yu, A. Makarov, A. De Keersgieter, M. Vexler, M. Vandemaele, R. Wang, A. Spessot, A. Chasin, B. Kaczer
{"title":"On The Contribution of Secondary Holes in Hot-Carrier Degradation – a Compact Physics Modeling Perspective","authors":"S. Tyaginov, E. Bury, A. Grill, Z. Yu, A. Makarov, A. De Keersgieter, M. Vexler, M. Vandemaele, R. Wang, A. Spessot, A. Chasin, B. Kaczer","doi":"10.1109/EDTM55494.2023.10103111","DOIUrl":null,"url":null,"abstract":"We extend our compact physics model for hot-carrier degradation (HCD) by implementing the contribution to damage caused by the secondary carriers (generated by impact ionization) and revisiting transport modeling for primary carriers. To verify the model we employ planar field-effect transistors (FETs) with a gate length of 28 nm, which were subjected to HC stress under $V_{\\text{gs}}=V_{\\text{ds}}(V_{\\text{gs}}$, and $V_{\\text{ds}}$ are gate and drain voltages, respectively) and at conditions with $V_{\\text{gs}}$ much lower than $V_{\\text{ds}}$. We show that in the former case the contribution of secondary holes is small, whereas at lower $V_{\\text{gs}}$ the secondary holes result in a substantial portion of damage, especially at higher $V_{\\mathrm{d}\\mathrm{s}}$. Finally, we show that the model can accurately capture experimental changes of the linear drain current induced by HC stress.","PeriodicalId":418413,"journal":{"name":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTM55494.2023.10103111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We extend our compact physics model for hot-carrier degradation (HCD) by implementing the contribution to damage caused by the secondary carriers (generated by impact ionization) and revisiting transport modeling for primary carriers. To verify the model we employ planar field-effect transistors (FETs) with a gate length of 28 nm, which were subjected to HC stress under $V_{\text{gs}}=V_{\text{ds}}(V_{\text{gs}}$, and $V_{\text{ds}}$ are gate and drain voltages, respectively) and at conditions with $V_{\text{gs}}$ much lower than $V_{\text{ds}}$. We show that in the former case the contribution of secondary holes is small, whereas at lower $V_{\text{gs}}$ the secondary holes result in a substantial portion of damage, especially at higher $V_{\mathrm{d}\mathrm{s}}$. Finally, we show that the model can accurately capture experimental changes of the linear drain current induced by HC stress.
热载流子降解中二次孔的贡献——一个紧凑的物理建模视角
我们扩展了热载流子降解(HCD)的紧凑物理模型,实现了二次载流子(由撞击电离产生)对损伤的贡献,并重新审视了主要载流子的输运模型。为了验证该模型,我们采用栅极长度为28 nm的平面场效应晶体管(fet),在$V_{\text{gs}}=V_{\text{ds}}}(V_{\text{gs}}$和$V_{\text{ds}}$分别为栅极和漏极电压)和$V_{\text{gs}}$远低于$V_{\text{ds}}$的条件下,对其施加HC应力。结果表明,在前一种情况下,次级孔洞的贡献很小,而在较低的$V_{\text{gs}}$时,次级孔洞造成了相当大的一部分损伤,特别是在较高的$V_{\ mathm {d}\ mathm {s}}$时。最后,我们证明了该模型可以准确地捕捉HC应力引起的线性漏极电流的实验变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信