Experimental Survey of Geospatial Big Data Platforms

Nilkamal More, V. Nikam, Sumit S. Sen
{"title":"Experimental Survey of Geospatial Big Data Platforms","authors":"Nilkamal More, V. Nikam, Sumit S. Sen","doi":"10.1109/HIPCW.2018.8634070","DOIUrl":null,"url":null,"abstract":"Recent advances in geospatial data acquisition techniques are instrumental in the generation of massive data that are being processed by geospatial big data platforms such as Spatial Hadoop and Geo-spark. While some of this data is stored in databases, much of the data is unstructured and temporal. In this paper, we survey alternatives available in geospatial big data frameworks. We present a comparative study of the different approaches and an experimental evaluation of the two most used platforms Geospark and Spatial Hadoop. We discuss our evaluation results in the context of various tasks in commonly used geospatial processing tasks, especially in the context of Volume, Value, Viscosity, Variability, Volatility, Viability, Validity and Variety.","PeriodicalId":401060,"journal":{"name":"2018 IEEE 25th International Conference on High Performance Computing Workshops (HiPCW)","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on High Performance Computing Workshops (HiPCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIPCW.2018.8634070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recent advances in geospatial data acquisition techniques are instrumental in the generation of massive data that are being processed by geospatial big data platforms such as Spatial Hadoop and Geo-spark. While some of this data is stored in databases, much of the data is unstructured and temporal. In this paper, we survey alternatives available in geospatial big data frameworks. We present a comparative study of the different approaches and an experimental evaluation of the two most used platforms Geospark and Spatial Hadoop. We discuss our evaluation results in the context of various tasks in commonly used geospatial processing tasks, especially in the context of Volume, Value, Viscosity, Variability, Volatility, Viability, Validity and Variety.
地理空间大数据平台实验调查
地理空间数据采集技术的最新进展有助于生成由地理空间大数据平台(如Spatial Hadoop和Geo-spark)处理的海量数据。虽然其中一些数据存储在数据库中,但大部分数据是非结构化的和临时的。在本文中,我们调查了地理空间大数据框架中可用的替代方案。我们对不同的方法进行了比较研究,并对两个最常用的平台Geospark和Spatial Hadoop进行了实验评估。我们在常用的地理空间处理任务的各种任务背景下讨论了我们的评估结果,特别是在体积,价值,粘度,可变性,挥发性,可行性,有效性和多样性的背景下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信