{"title":"Simulation study of a contactless, capacitive ECG system","authors":"K. R. Sandra, A. Anusha, N. Mohan, B. George","doi":"10.1109/TENCON.2014.7022474","DOIUrl":null,"url":null,"abstract":"The electrocardiogram (ECG) is one of the primary sources of information for assessing cardiovascular function. Conventional ECG systems are not suitable for continuous, long-term monitoring. Contactless measurement of ECG using capacitive sensors is emerging as an attractive alternative. One of the disadvantages of a contactless system is that the signal quality is poor as far as the clinical acceptance of the system is concerned. The contactless ECG signal typically contains a relatively large amount of dc, due to electrode offset or artifacts, which would drive the front end of the high-gain amplifier into saturation. Hence, what is required is a circuit that would effectively block dc while coupling the differential ac signal. A circuit developed for conventional ECG systems has been made use of, for this purpose. This paper describes the simulation and analysis of a contactless ECG monitoring system, using capacitive electrodes, with an ac-coupled front end for effective dc decoupling. The performance of the circuit is studied for different material and thicknesses of clothing.","PeriodicalId":292057,"journal":{"name":"TENCON 2014 - 2014 IEEE Region 10 Conference","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2014 - 2014 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2014.7022474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The electrocardiogram (ECG) is one of the primary sources of information for assessing cardiovascular function. Conventional ECG systems are not suitable for continuous, long-term monitoring. Contactless measurement of ECG using capacitive sensors is emerging as an attractive alternative. One of the disadvantages of a contactless system is that the signal quality is poor as far as the clinical acceptance of the system is concerned. The contactless ECG signal typically contains a relatively large amount of dc, due to electrode offset or artifacts, which would drive the front end of the high-gain amplifier into saturation. Hence, what is required is a circuit that would effectively block dc while coupling the differential ac signal. A circuit developed for conventional ECG systems has been made use of, for this purpose. This paper describes the simulation and analysis of a contactless ECG monitoring system, using capacitive electrodes, with an ac-coupled front end for effective dc decoupling. The performance of the circuit is studied for different material and thicknesses of clothing.