Selective angle measurements for a 3D-AOA instrumental variable TMA algorithm

K. Doğançay, R. Arablouei
{"title":"Selective angle measurements for a 3D-AOA instrumental variable TMA algorithm","authors":"K. Doğançay, R. Arablouei","doi":"10.1109/EUSIPCO.2015.7362372","DOIUrl":null,"url":null,"abstract":"The method of instrumental variables has been successfully applied to pseudolinear estimation for angle-of-arrival target motion analysis (TMA). The objective of instrumental variables is to modify the normal equations of a biased least-squares estimator to make it asymptotically unbiased. The instrumental variable (IV) matrix, used in the modified normal equations, is required to be strongly correlated with the data matrix and uncorrelated with the noise in the measurement vector. At small SNR, the correlation between the IV matrix and the data matrix can become weak. The concept of selective angle measurements (SAM) overcomes this problem by allowing some rows of the IV matrix and data matrix to be identical. This paper demonstrates the effectiveness of SAM for a previously proposed 3D angle-only IV TMA algorithm. The performance improvement of SAM is verified by simulation examples.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The method of instrumental variables has been successfully applied to pseudolinear estimation for angle-of-arrival target motion analysis (TMA). The objective of instrumental variables is to modify the normal equations of a biased least-squares estimator to make it asymptotically unbiased. The instrumental variable (IV) matrix, used in the modified normal equations, is required to be strongly correlated with the data matrix and uncorrelated with the noise in the measurement vector. At small SNR, the correlation between the IV matrix and the data matrix can become weak. The concept of selective angle measurements (SAM) overcomes this problem by allowing some rows of the IV matrix and data matrix to be identical. This paper demonstrates the effectiveness of SAM for a previously proposed 3D angle-only IV TMA algorithm. The performance improvement of SAM is verified by simulation examples.
选择角度测量的3D-AOA仪器变量TMA算法
工具变量法已成功地应用于目标运动分析的伪线性估计中。工具变量的目的是修改有偏最小二乘估计量的正态方程,使其渐近无偏。在修正的正态方程中使用的工具变量(IV)矩阵需要与数据矩阵强相关,并且与测量向量中的噪声不相关。在较小的信噪比下,IV矩阵与数据矩阵之间的相关性会变得很弱。选择性角度测量(SAM)的概念通过允许IV矩阵和数据矩阵的某些行相同来克服这个问题。本文证明了SAM对先前提出的3D纯角度IV TMA算法的有效性。通过仿真算例验证了该方法的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信