Charge-mode parallel architecture for matrix-vector multiplication

Roman Genov, Gert Cauwenberghs
{"title":"Charge-mode parallel architecture for matrix-vector multiplication","authors":"Roman Genov, Gert Cauwenberghs","doi":"10.1109/MWSCAS.2000.951694","DOIUrl":null,"url":null,"abstract":"An internally analog, externally digital architecture for matrix-vector multiplication is presented. Fully parallel processing allows for high data throughput and minimal latency. The analog architecture incorporates an array of charge-mode analog computational cells with dynamic storage and row-parallel flash analog-to-digital converters (ADC). Each of the cells includes a dynamic storage element and a charge injection device computing binary inner product of two arguments. The matrix elements are stored in the array of computational cells in bit-parallel fashion, and the input vector is presented bit-serially. Digital post-processing is then performed on the ADC outputs to construct the resulting product with precision higher than that of each conversion. The analog architecture is tailored for high-density and low power VLSI implementation, and matrix dimensions of 128/spl times/512 and ADC resolution of 6 bits for an overall resolution in excess of 8 bits are feasible on a 3 mm/spl times/3 mm chip in standard CMOS 0.5 /spl mu/m technology.","PeriodicalId":437349,"journal":{"name":"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2000.951694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

An internally analog, externally digital architecture for matrix-vector multiplication is presented. Fully parallel processing allows for high data throughput and minimal latency. The analog architecture incorporates an array of charge-mode analog computational cells with dynamic storage and row-parallel flash analog-to-digital converters (ADC). Each of the cells includes a dynamic storage element and a charge injection device computing binary inner product of two arguments. The matrix elements are stored in the array of computational cells in bit-parallel fashion, and the input vector is presented bit-serially. Digital post-processing is then performed on the ADC outputs to construct the resulting product with precision higher than that of each conversion. The analog architecture is tailored for high-density and low power VLSI implementation, and matrix dimensions of 128/spl times/512 and ADC resolution of 6 bits for an overall resolution in excess of 8 bits are feasible on a 3 mm/spl times/3 mm chip in standard CMOS 0.5 /spl mu/m technology.
矩阵-向量乘法的电荷模式并行架构
提出了一种内部模拟,外部数字的矩阵向量乘法体系结构。完全并行处理允许高数据吞吐量和最小延迟。模拟体系结构包含一组带动态存储和行并行闪存模数转换器(ADC)的电荷模式模拟计算单元。每个单元包括一个动态存储单元和一个电荷注入装置,用于计算两个参数的二进制内积。矩阵元素以位并行方式存储在计算单元数组中,输入向量以位串行方式表示。然后对ADC输出进行数字后处理,以构建精度高于每次转换的结果乘积。模拟架构专为高密度和低功耗VLSI实现而量身定制,在标准CMOS 0.5 /spl mu/m技术的3mm /spl times/ 3mm芯片上,矩阵尺寸为128/spl times/512, ADC分辨率为6位,总分辨率超过8位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信