Sensor Fault Diagnosis in State Feedback Systems using Artificial Neural Networks

V. Manikandan, K. Ramakrishan, N. Devarajan, C. K. Babu, R. VenkatateswaraBhupathi
{"title":"Sensor Fault Diagnosis in State Feedback Systems using Artificial Neural Networks","authors":"V. Manikandan, K. Ramakrishan, N. Devarajan, C. K. Babu, R. VenkatateswaraBhupathi","doi":"10.18000/IJIES.30010","DOIUrl":null,"url":null,"abstract":"A simulation before test method for fault diagnosis and classification towards sensor fault in linear time invariant state feed back system is presented in this paper. The novelty of the approach lies in associating with each state feedback gain factor a scalar , which is defined as the sensor healthiness factor. This scalar is made to vary from 1 (no fault condition) to 0 (full fault condition) in predetermined steps. The intermediate values of portray the deterioration modes of the sensor. The Integral Square Error (ISE) criterion is employed for extracting the signature of the fault and the classification is done using Artificial Neural Network (ANN) classifier. The proposed diagnosis approach is applied to a dc motor system to validate the effectiveness of the technique.program inspections, static & dynamic analysis and V&V techniques","PeriodicalId":368328,"journal":{"name":"International Journal on Intelligent Electronic Systems","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Intelligent Electronic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18000/IJIES.30010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A simulation before test method for fault diagnosis and classification towards sensor fault in linear time invariant state feed back system is presented in this paper. The novelty of the approach lies in associating with each state feedback gain factor a scalar , which is defined as the sensor healthiness factor. This scalar is made to vary from 1 (no fault condition) to 0 (full fault condition) in predetermined steps. The intermediate values of portray the deterioration modes of the sensor. The Integral Square Error (ISE) criterion is employed for extracting the signature of the fault and the classification is done using Artificial Neural Network (ANN) classifier. The proposed diagnosis approach is applied to a dc motor system to validate the effectiveness of the technique.program inspections, static & dynamic analysis and V&V techniques
基于人工神经网络的状态反馈系统传感器故障诊断
提出了一种线性时不变状态反馈系统传感器故障诊断与分类的测试前仿真方法。该方法的新颖之处在于将每个状态反馈增益因子与一个标量相关联,该标量被定义为传感器健康度因子。该标量在预定步骤中从1(无故障状态)到0(完全故障状态)变化。的中间值表示传感器的劣化模式。采用积分平方误差(ISE)准则提取故障特征,并采用人工神经网络(ANN)分类器进行分类。将所提出的诊断方法应用于直流电机系统,验证了该方法的有效性。程序检查,静态和动态分析以及V&V技术
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信