The Singularity in Two Edge-Bonded Two-Dimensional Piezoelectric Quasicrystal Wedges

Xiang Mu, Z. Zhu, Liangliang Zhang, Yang Gao
{"title":"The Singularity in Two Edge-Bonded Two-Dimensional Piezoelectric Quasicrystal Wedges","authors":"Xiang Mu, Z. Zhu, Liangliang Zhang, Yang Gao","doi":"10.1109/SPAWDA56268.2022.10045838","DOIUrl":null,"url":null,"abstract":"Quasicrystals have aroused great interest due to their unique atomic structure and excellent properties. In this paper, the problem of the singularity in edge-bonded two-dimensional piezoelectric quasicrystal wedges is discussed. By using Stroh formalism, we obtained a crucial matrix which related to material properties and wedge angles, for each wedge. With the help of the matrix operations, the analytical expressions for the singular order can easily be developed by simple multiplication of crucial matrix. Therefore, crucial matrix plays an important role in the final solutions, the results may be useful to design and select wedge structure in engineering applications.","PeriodicalId":387693,"journal":{"name":"2022 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWDA56268.2022.10045838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quasicrystals have aroused great interest due to their unique atomic structure and excellent properties. In this paper, the problem of the singularity in edge-bonded two-dimensional piezoelectric quasicrystal wedges is discussed. By using Stroh formalism, we obtained a crucial matrix which related to material properties and wedge angles, for each wedge. With the help of the matrix operations, the analytical expressions for the singular order can easily be developed by simple multiplication of crucial matrix. Therefore, crucial matrix plays an important role in the final solutions, the results may be useful to design and select wedge structure in engineering applications.
两边键合二维压电准晶楔的奇异性
准晶体以其独特的原子结构和优异的性能引起了人们的极大兴趣。本文讨论了边缘键合二维压电准晶楔的奇异性问题。利用Stroh公式,我们得到了与材料性能和楔形角相关的关键矩阵。在矩阵运算的帮助下,通过对关键矩阵的简单乘法,可以很容易地推导出奇异阶的解析表达式。因此,关键矩阵在最终解中起着重要的作用,其结果对工程应用中楔形结构的设计和选择具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信