Computation of free non-commutative gröbner bases over Z with Singular:Letterplace

V. Levandovskyy, Tobias Metzlaff, Karim Abou Zeid
{"title":"Computation of free non-commutative gröbner bases over Z with Singular:Letterplace","authors":"V. Levandovskyy, Tobias Metzlaff, Karim Abou Zeid","doi":"10.1145/3373207.3404052","DOIUrl":null,"url":null,"abstract":"The extension of Gröbner bases concept from polynomial algebras over fields to polynomial rings over rings allows to tackle numerous applications, both of theoretical and of practical importance. Gröbner and Gröbner-Shirshov bases can be defined for various non-commutative and even non-associative algebraic structures. We study the case of associative rings and aim at free algebras over principal ideal rings. We concentrate ourselves on the case of commutative coefficient rings without zero divisors (i.e. a domain). Even working over Z allows one to do computations, which can be treated as universal for fields of arbitrary characteristic. By using the systematic approach, we revisit the theory and present the algorithms in the implementable form. We show drastic differences in the behavior of Gröbner bases between free algebras and algebras, close to commutative. Even the formation of critical pairs has to be reengineered, together with the criteria for their quick discarding. We present an implementation of algorithms in the Singular subsystem called Letterplace, which internally uses Letterplace techniques (and Letterplace Gröbner bases), due to La Scala and Levandovskyy. Interesting examples accompany our presentation.","PeriodicalId":186699,"journal":{"name":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373207.3404052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The extension of Gröbner bases concept from polynomial algebras over fields to polynomial rings over rings allows to tackle numerous applications, both of theoretical and of practical importance. Gröbner and Gröbner-Shirshov bases can be defined for various non-commutative and even non-associative algebraic structures. We study the case of associative rings and aim at free algebras over principal ideal rings. We concentrate ourselves on the case of commutative coefficient rings without zero divisors (i.e. a domain). Even working over Z allows one to do computations, which can be treated as universal for fields of arbitrary characteristic. By using the systematic approach, we revisit the theory and present the algorithms in the implementable form. We show drastic differences in the behavior of Gröbner bases between free algebras and algebras, close to commutative. Even the formation of critical pairs has to be reengineered, together with the criteria for their quick discarding. We present an implementation of algorithms in the Singular subsystem called Letterplace, which internally uses Letterplace techniques (and Letterplace Gröbner bases), due to La Scala and Levandovskyy. Interesting examples accompany our presentation.
Z上具有奇异位的自由非交换gröbner基的计算
将Gröbner基的概念从域上的多项式代数扩展到环上的多项式环,可以解决许多理论和实际重要性的应用。可以为各种非交换甚至非结合的代数结构定义Gröbner和Gröbner-Shirshov基。我们研究了结合环的情况,并以主理想环上的自由代数为目标。我们集中讨论无零除数的交换系数环(即定义域)的情况。即使在Z上工作,也可以进行计算,这可以被视为任意特征域的通用。通过使用系统的方法,我们重新审视了理论,并以可实现的形式提出了算法。我们展示了在自由代数和代数之间Gröbner基的行为的巨大差异,接近交换。即使是关键对的形成也必须重新设计,以及快速丢弃它们的标准。我们在称为Letterplace的奇异子系统中提出了一种算法实现,它内部使用了来自La Scala和levandovsky的Letterplace技术(和Letterplace Gröbner基)。我们的演讲附有有趣的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信