{"title":"Towards a reliable parallel redundant WLAN black channel","authors":"M. Rentschler, Per Laukemann","doi":"10.1109/WFCS.2012.6242573","DOIUrl":null,"url":null,"abstract":"WLAN according to standard IEEE 802.11 is widely regarded unsuitable as communication channel for real-time and safety applications. Non-determinism and interference liability leads to packet loss, exceeded and variable latency times due to retransmissions. This work proposes a method that compensates such consequences of stochastic channel fading by the parallel operation of diverse wireless channels, applying frequency and space diversity techniques. A fault-tolerant wireless “black channel” is achieved that is able to fulfill soft real-time availability plus providing redundancy. This is realized with standard WLAN components and the “Parallel Redundancy Protocol” (PRP) according to IEC 62439-3. Reliability and performance characteristics are derived from measurements on an experimental setup with SafetyNET p nodes.","PeriodicalId":110610,"journal":{"name":"2012 9th IEEE International Workshop on Factory Communication Systems","volume":"301 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 9th IEEE International Workshop on Factory Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WFCS.2012.6242573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44
Abstract
WLAN according to standard IEEE 802.11 is widely regarded unsuitable as communication channel for real-time and safety applications. Non-determinism and interference liability leads to packet loss, exceeded and variable latency times due to retransmissions. This work proposes a method that compensates such consequences of stochastic channel fading by the parallel operation of diverse wireless channels, applying frequency and space diversity techniques. A fault-tolerant wireless “black channel” is achieved that is able to fulfill soft real-time availability plus providing redundancy. This is realized with standard WLAN components and the “Parallel Redundancy Protocol” (PRP) according to IEC 62439-3. Reliability and performance characteristics are derived from measurements on an experimental setup with SafetyNET p nodes.