Yuanfa Wang, Yu Pang, Huan Huang, Qianneng Zhou, Jiasai Luo
{"title":"Hardware Design of Gaussian Kernel Function for Non-Linear SVM Classification","authors":"Yuanfa Wang, Yu Pang, Huan Huang, Qianneng Zhou, Jiasai Luo","doi":"10.1109/ASICON52560.2021.9620361","DOIUrl":null,"url":null,"abstract":"High-performance implementation of non-linear support vector machine (SVM) function is important in many applications. This paper develops a hardware design of Gaussian kernel function with high-performance since it is one of the most modules in non-linear SVM. The designed Gaussian kernel function consists of Norm unit and exponentiation function unit. The Norm unit uses fewer subtractors and multiplexers. The exponentiation function unit performs modified coordinate rotation digital computer algorithm with wide range of convergence and high accuracy. The presented circuit is implemented on a Xilinx field-programmable gate array platform. The experimental results demonstrate that the designed circuit achieves low resource utilization and high efficiency with relative error 0.0001.","PeriodicalId":233584,"journal":{"name":"2021 IEEE 14th International Conference on ASIC (ASICON)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th International Conference on ASIC (ASICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON52560.2021.9620361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
High-performance implementation of non-linear support vector machine (SVM) function is important in many applications. This paper develops a hardware design of Gaussian kernel function with high-performance since it is one of the most modules in non-linear SVM. The designed Gaussian kernel function consists of Norm unit and exponentiation function unit. The Norm unit uses fewer subtractors and multiplexers. The exponentiation function unit performs modified coordinate rotation digital computer algorithm with wide range of convergence and high accuracy. The presented circuit is implemented on a Xilinx field-programmable gate array platform. The experimental results demonstrate that the designed circuit achieves low resource utilization and high efficiency with relative error 0.0001.