Mohamed A. Khamis, A. El-Mahdy, Kholoud Shata, W. Gomaa
{"title":"Fast Fourier Transform based Method for Accident Detection","authors":"Mohamed A. Khamis, A. El-Mahdy, Kholoud Shata, W. Gomaa","doi":"10.1109/JAC-ECC56395.2022.10044018","DOIUrl":null,"url":null,"abstract":"Accidents fatality is generally dependent on the time an emergency service is dispatched to the accident scene. Decreasing this time requires fast and accurate accident detection and notification systems. Therefore, existing well-established systems rely on rugged devices, with specialised hardware and accurate sensors to allow for in-vehicle detection and notification. Smartphones have been considered as an alternative mainly due to their much lower cost. In this paper, we show that reliable accident detection can be achieved using main stream smartphone sensors (e.g., accelerometer and gyroscope). The method relies on detecting the accident pulse through using Fourier transform and a random forest classifier. The method also utilises a moving window to incorporate time; and is simple enough to allow for during-accident detection, not requiring the mobile to survive the accident. We have validated the model using the Ollie car-like robot micro accident-testbed and the gold standard in accident simulation, LS-DYNA, achieving a true positive rate of about 96% and true negative rate of 99%.","PeriodicalId":326002,"journal":{"name":"2022 10th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JAC-ECC56395.2022.10044018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Accidents fatality is generally dependent on the time an emergency service is dispatched to the accident scene. Decreasing this time requires fast and accurate accident detection and notification systems. Therefore, existing well-established systems rely on rugged devices, with specialised hardware and accurate sensors to allow for in-vehicle detection and notification. Smartphones have been considered as an alternative mainly due to their much lower cost. In this paper, we show that reliable accident detection can be achieved using main stream smartphone sensors (e.g., accelerometer and gyroscope). The method relies on detecting the accident pulse through using Fourier transform and a random forest classifier. The method also utilises a moving window to incorporate time; and is simple enough to allow for during-accident detection, not requiring the mobile to survive the accident. We have validated the model using the Ollie car-like robot micro accident-testbed and the gold standard in accident simulation, LS-DYNA, achieving a true positive rate of about 96% and true negative rate of 99%.