Study of automatic biosounds detection and classification using SVM and GMM

Bor Jenq. Chua, Xue Li, H. D. Tran
{"title":"Study of automatic biosounds detection and classification using SVM and GMM","authors":"Bor Jenq. Chua, Xue Li, H. D. Tran","doi":"10.1109/LISSA.2011.5754182","DOIUrl":null,"url":null,"abstract":"Ambulatory devices can be used to detect heart diseases and save lives in critical time. These devices are based on sound classification that usually adopts a suitable data mining algorithm. This paper investigates the performance of Support Vector Machine (SVM) and Gaussian Mixture Model (GMM) classifiers in classifying sound samples. SVM classifier makes use of a linearly separable hyperplane to classify data into different classes, while GMM utilizes a probabilistic model for density estimation through probability density functions. Feature vectors of sound samples were extracted using the Mel-frequency cepstral coefficients (MFCCs) and fed to the classifiers. Our experimental results showed that SVM is more robust than GMM, and SVM achieved >80% classification accuracy in all classes of sound samples collected in this study.","PeriodicalId":227469,"journal":{"name":"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISSA.2011.5754182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ambulatory devices can be used to detect heart diseases and save lives in critical time. These devices are based on sound classification that usually adopts a suitable data mining algorithm. This paper investigates the performance of Support Vector Machine (SVM) and Gaussian Mixture Model (GMM) classifiers in classifying sound samples. SVM classifier makes use of a linearly separable hyperplane to classify data into different classes, while GMM utilizes a probabilistic model for density estimation through probability density functions. Feature vectors of sound samples were extracted using the Mel-frequency cepstral coefficients (MFCCs) and fed to the classifiers. Our experimental results showed that SVM is more robust than GMM, and SVM achieved >80% classification accuracy in all classes of sound samples collected in this study.
基于SVM和GMM的生物声音自动检测与分类研究
流动设备可用于检测心脏疾病,并在关键时刻挽救生命。这些设备基于健全的分类,通常采用合适的数据挖掘算法。本文研究了支持向量机(SVM)和高斯混合模型(GMM)分类器在声音样本分类中的性能。SVM分类器利用线性可分的超平面对数据进行分类,而GMM利用概率模型通过概率密度函数进行密度估计。利用Mel-frequency倒谱系数(MFCCs)提取声音样本的特征向量,并将其输入到分类器中。我们的实验结果表明,SVM比GMM具有更强的鲁棒性,SVM在本研究收集的所有类别的声音样本中都达到了>80%的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信