Avalanche instability in oxide charge balanced power MOSFETs

J. Yedinak, R. Stokes, D. Probst, S. Kim, A. Challa, S. Sapp
{"title":"Avalanche instability in oxide charge balanced power MOSFETs","authors":"J. Yedinak, R. Stokes, D. Probst, S. Kim, A. Challa, S. Sapp","doi":"10.1109/ISPSD.2011.5890814","DOIUrl":null,"url":null,"abstract":"Power MOSFET designs have been moving to higher performance particularly in the medium voltage area. (60V to 300V) New designs require lower specific on-resistance (RSP) thus forcing designers to push the envelope of increasing the electric field stress on the shielding oxide, reducing the cell pitch, and increasing the epitaxial (epi) drift doping to reduce on resistance. In doing so, time dependant avalanche instabilities have become a concern for oxide charge balanced power MOSFETs. Avalanche instabilities can initiate in the active cell and/or the termination structures. These instabilities cause the avalanche breakdown to increase and/or decrease with increasing time in avalanche. They become a reliability risk when the drain to source breakdown voltage (BVdss) degrades below the operating voltage of the application circuit. This paper will explain a mechanism for these avalanche instabilities and propose an optimum design for the charge balance region. TCAD simulation was employed to give insight to the mechanism. Finally, measured data will be presented to substantiate the theory.","PeriodicalId":132504,"journal":{"name":"2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2011.5890814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Power MOSFET designs have been moving to higher performance particularly in the medium voltage area. (60V to 300V) New designs require lower specific on-resistance (RSP) thus forcing designers to push the envelope of increasing the electric field stress on the shielding oxide, reducing the cell pitch, and increasing the epitaxial (epi) drift doping to reduce on resistance. In doing so, time dependant avalanche instabilities have become a concern for oxide charge balanced power MOSFETs. Avalanche instabilities can initiate in the active cell and/or the termination structures. These instabilities cause the avalanche breakdown to increase and/or decrease with increasing time in avalanche. They become a reliability risk when the drain to source breakdown voltage (BVdss) degrades below the operating voltage of the application circuit. This paper will explain a mechanism for these avalanche instabilities and propose an optimum design for the charge balance region. TCAD simulation was employed to give insight to the mechanism. Finally, measured data will be presented to substantiate the theory.
氧化物电荷平衡功率mosfet的雪崩不稳定性
功率MOSFET设计一直在向更高的性能发展,特别是在中压领域。(60V至300V)新设计需要更低的特定导通电阻(RSP),因此迫使设计人员推动增加屏蔽氧化物上的电场应力,减小电池间距,并增加外延(epi)漂移掺杂以降低导通电阻。在此过程中,时间相关的雪崩不稳定性已成为氧化物电荷平衡功率mosfet的关注点。雪崩不稳定性可以在活性单元和/或终止结构中开始。这些不稳定性导致雪崩破裂随雪崩时间的增加而增加或减少。当漏极到源端击穿电压(BVdss)低于应用电路的工作电压时,它们就会成为可靠性风险。本文将解释这些雪崩不稳定性的机制,并提出电荷平衡区的最佳设计。采用TCAD仿真对其机理进行了深入研究。最后,将提供测量数据来证实理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信