Spacecraft autonomy modeled via Markov decision process and associative rule-based machine learning

Gianni D’Angelo, M. Tipaldi, L. Glielmo, S. Rampone
{"title":"Spacecraft autonomy modeled via Markov decision process and associative rule-based machine learning","authors":"Gianni D’Angelo, M. Tipaldi, L. Glielmo, S. Rampone","doi":"10.1109/METROAEROSPACE.2017.7999589","DOIUrl":null,"url":null,"abstract":"Spacecraft on-board autonomy is an important topic in currently developed and future space missions. In this study, we present a robust approach to the optimal policy of autonomous space systems modeled via Markov Decision Process (MDP) from the values assigned to its transition probability matrix. After addressing the curse of dimensionality in solving the formulated MDP problem via Approximate Dynamic Programming, we use an Apriori-based Association Classifier to infer a specific optimal policy. Finally, we also assess the effectiveness of such optimal policy in fulfilling the spacecraft autonomy requirements.","PeriodicalId":229414,"journal":{"name":"2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METROAEROSPACE.2017.7999589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Spacecraft on-board autonomy is an important topic in currently developed and future space missions. In this study, we present a robust approach to the optimal policy of autonomous space systems modeled via Markov Decision Process (MDP) from the values assigned to its transition probability matrix. After addressing the curse of dimensionality in solving the formulated MDP problem via Approximate Dynamic Programming, we use an Apriori-based Association Classifier to infer a specific optimal policy. Finally, we also assess the effectiveness of such optimal policy in fulfilling the spacecraft autonomy requirements.
基于马尔可夫决策过程和基于关联规则的机器学习的航天器自主建模
在当前和未来的航天任务中,航天器自主是一个重要的课题。在这项研究中,我们提出了一种鲁棒方法,通过马尔可夫决策过程(MDP)从分配给其转移概率矩阵的值来建模自治空间系统的最优策略。在通过近似动态规划解决公式化MDP问题的维数诅咒之后,我们使用基于apriori的关联分类器来推断特定的最优策略。最后,我们还评估了该最优策略在满足航天器自主性要求方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信