Gianni D’Angelo, M. Tipaldi, L. Glielmo, S. Rampone
{"title":"Spacecraft autonomy modeled via Markov decision process and associative rule-based machine learning","authors":"Gianni D’Angelo, M. Tipaldi, L. Glielmo, S. Rampone","doi":"10.1109/METROAEROSPACE.2017.7999589","DOIUrl":null,"url":null,"abstract":"Spacecraft on-board autonomy is an important topic in currently developed and future space missions. In this study, we present a robust approach to the optimal policy of autonomous space systems modeled via Markov Decision Process (MDP) from the values assigned to its transition probability matrix. After addressing the curse of dimensionality in solving the formulated MDP problem via Approximate Dynamic Programming, we use an Apriori-based Association Classifier to infer a specific optimal policy. Finally, we also assess the effectiveness of such optimal policy in fulfilling the spacecraft autonomy requirements.","PeriodicalId":229414,"journal":{"name":"2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/METROAEROSPACE.2017.7999589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Spacecraft on-board autonomy is an important topic in currently developed and future space missions. In this study, we present a robust approach to the optimal policy of autonomous space systems modeled via Markov Decision Process (MDP) from the values assigned to its transition probability matrix. After addressing the curse of dimensionality in solving the formulated MDP problem via Approximate Dynamic Programming, we use an Apriori-based Association Classifier to infer a specific optimal policy. Finally, we also assess the effectiveness of such optimal policy in fulfilling the spacecraft autonomy requirements.