Fuzzy sexual selection and multi-crossover for genetic algorithm

M. J. Varnamkhasti, L. Lee
{"title":"Fuzzy sexual selection and multi-crossover for genetic algorithm","authors":"M. J. Varnamkhasti, L. Lee","doi":"10.5897/IJVTE.9000014","DOIUrl":null,"url":null,"abstract":"This paper introduces a new selection scheme inspired by sexual selection and some new methods based on combination of crossovers, concept of sexual selection and lifetime for chromosomes. A bi-linear allocation lifetime approach is used to label the chromosomes based on their fitness value. After selecting a label for each chromosome, using fuzzy rules and selecting a suitable crossover method, initially prepared for recombination in the genetic algorithm (GA). Computational experiments are conducted to compare the performance of this new technique with some commonly used crossover mechanisms found in a standard GA in order to solving some numerical functions from the literature. \n \n   \n \n Key words: Genetic algorithm, selection, sexual selection, fuzzy, crossover.","PeriodicalId":154366,"journal":{"name":"Vocational and Technical Education","volume":"58 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vocational and Technical Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5897/IJVTE.9000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper introduces a new selection scheme inspired by sexual selection and some new methods based on combination of crossovers, concept of sexual selection and lifetime for chromosomes. A bi-linear allocation lifetime approach is used to label the chromosomes based on their fitness value. After selecting a label for each chromosome, using fuzzy rules and selecting a suitable crossover method, initially prepared for recombination in the genetic algorithm (GA). Computational experiments are conducted to compare the performance of this new technique with some commonly used crossover mechanisms found in a standard GA in order to solving some numerical functions from the literature.   Key words: Genetic algorithm, selection, sexual selection, fuzzy, crossover.
遗传算法的模糊性选择和多交叉
本文介绍了受性选择启发的一种新的选择方案,以及基于交叉杂交、性选择概念和染色体寿命相结合的一些新方法。采用双线性分配寿命方法根据染色体的适应度值对其进行标记。在为每条染色体选择一个标签后,利用模糊规则和选择合适的交叉方法,为遗传算法中的重组做初步准备。为了求解文献中的一些数值函数,我们进行了计算实验,将这种新技术的性能与标准遗传算法中常用的交叉机制进行了比较。关键词:遗传算法,选择,性选择,模糊,交叉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信