General witness sets for numerical algebraic geometry

F. Sottile
{"title":"General witness sets for numerical algebraic geometry","authors":"F. Sottile","doi":"10.1145/3373207.3403995","DOIUrl":null,"url":null,"abstract":"Numerical algebraic geometry has a close relationship to intersection theory from algebraic geometry. We deepen this relationship, explaining how rational or algebraic equivalence gives a homotopy. We present a general notion of witness set for subvarieties of a smooth complete complex algebraic variety using ideas from intersection theory. Under appropriate assumptions, general witness sets enable numerical algorithms such as sampling and membership. These assumptions hold for products of flag manifolds. We introduce Schubert witness sets, which provide general witness sets for Grassmannians and flag manifolds.","PeriodicalId":186699,"journal":{"name":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","volume":"519 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373207.3403995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Numerical algebraic geometry has a close relationship to intersection theory from algebraic geometry. We deepen this relationship, explaining how rational or algebraic equivalence gives a homotopy. We present a general notion of witness set for subvarieties of a smooth complete complex algebraic variety using ideas from intersection theory. Under appropriate assumptions, general witness sets enable numerical algorithms such as sampling and membership. These assumptions hold for products of flag manifolds. We introduce Schubert witness sets, which provide general witness sets for Grassmannians and flag manifolds.
数值代数几何的一般见证集
数值代数几何与代数几何中的交理论有着密切的关系。我们加深了这种关系,解释了理性或代数等价如何给出同伦。利用交理论的思想,给出了光滑完全复代数变的子变的见证集的一般概念。在适当的假设下,一般的见证集支持数值算法,如抽样和隶属。这些假设适用于标志流形的乘积。我们引入了Schubert见证集,它提供了Grassmannians和flag流形的一般见证集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信