A new eye gaze detection algorithm using PCA features and recurrent neural networks

Thai-Hoang Huynh
{"title":"A new eye gaze detection algorithm using PCA features and recurrent neural networks","authors":"Thai-Hoang Huynh","doi":"10.1109/CICA.2013.6611659","DOIUrl":null,"url":null,"abstract":"The paper presents a new eye-gaze detection algorithm from low resolution images using Principal Component Analysis (PCA) and recurrent neural networks (RNN). First, eye images are extracted from human face images using Adaboost classifier and Haar-like features. A set of sample eye images captured under different lighting conditions is used to build an eigeneye space based on PCA. The coordinates of the sampled eye images in the eigeneye space are employed to train three-layer recurrent neural networks. Experimental results show that the trained neural networks can determine eye gaze direction with high accuracy and robustness to lighting conditions of the working environment.","PeriodicalId":424622,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2013.6611659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The paper presents a new eye-gaze detection algorithm from low resolution images using Principal Component Analysis (PCA) and recurrent neural networks (RNN). First, eye images are extracted from human face images using Adaboost classifier and Haar-like features. A set of sample eye images captured under different lighting conditions is used to build an eigeneye space based on PCA. The coordinates of the sampled eye images in the eigeneye space are employed to train three-layer recurrent neural networks. Experimental results show that the trained neural networks can determine eye gaze direction with high accuracy and robustness to lighting conditions of the working environment.
一种新的基于PCA特征和递归神经网络的人眼注视检测算法
提出了一种基于主成分分析(PCA)和递归神经网络(RNN)的低分辨率人眼注视检测算法。首先,利用Adaboost分类器和haar样特征从人脸图像中提取人眼图像。利用在不同光照条件下采集的一组眼睛图像样本,构建基于PCA的特征眼空间。利用眼特征空间的眼图像坐标来训练三层递归神经网络。实验结果表明,所训练的神经网络对人眼注视方向的判断具有较高的准确性和对工作环境光照条件的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信