{"title":"Deflection-limiting commands with 1st-order actuators","authors":"Young-Ung Park, Y. Min, Yoon-Gyung Sung","doi":"10.1109/ICCAS.2013.6704188","DOIUrl":null,"url":null,"abstract":"In this paper, deflection-limiting commands are presented with 1st-order actuators to reduce the transient and residual deflection for flexible systems during rest-to-rest operations. The effects of nonlinear actuators are resulting from electrical driver, mechanical inertia, friction, or etc. The command profiles are developed with a vector diagram approach by adjusting the final command magnitude for start motion to reduce the transient deflection. They are described by closed-form functions with the system frequency, deflection-limiting ratios, actuator maximum velocity and actuator time constants. The proposed controller is evaluated with respect to pulse durations, deflection-limiting ratios and sensitivity. The performance of the proposed commands is numerically illustrated with a benchmark system and is experimentally evaluated on a mini bridge crane.","PeriodicalId":415263,"journal":{"name":"2013 13th International Conference on Control, Automation and Systems (ICCAS 2013)","volume":"315 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th International Conference on Control, Automation and Systems (ICCAS 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2013.6704188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, deflection-limiting commands are presented with 1st-order actuators to reduce the transient and residual deflection for flexible systems during rest-to-rest operations. The effects of nonlinear actuators are resulting from electrical driver, mechanical inertia, friction, or etc. The command profiles are developed with a vector diagram approach by adjusting the final command magnitude for start motion to reduce the transient deflection. They are described by closed-form functions with the system frequency, deflection-limiting ratios, actuator maximum velocity and actuator time constants. The proposed controller is evaluated with respect to pulse durations, deflection-limiting ratios and sensitivity. The performance of the proposed commands is numerically illustrated with a benchmark system and is experimentally evaluated on a mini bridge crane.