Design and evaluation of a parallel HOP clustering algorithm for cosmological simulation

Y. Liu, W. Liao, A. Choudhary
{"title":"Design and evaluation of a parallel HOP clustering algorithm for cosmological simulation","authors":"Y. Liu, W. Liao, A. Choudhary","doi":"10.1109/IPDPS.2003.1213186","DOIUrl":null,"url":null,"abstract":"Clustering, or unsupervised classification, has many uses in fields that depend on grouping results from large amount of data, an example being the N-body cosmological simulation in astrophysics. In this paper, we study a particular clustering algorithm used in astrophysics, called HOP, and present a parallel implementation to speed up its current sequential implementation. Our approach first builds in parallel the spatial domain hierarchical data structure, a three-dimensional KD tree. Using a KD tree, the core of the HOP algorithm that searches for the highest density neighbor can be performed using only subsets of the particles and hence the communication cost is reduced. We evaluate our implementation by using data sets from a production cosmological application. The experimental results demonstrate up to 24/spl times/ speedup using 64 processors on three parallel processing machines.","PeriodicalId":177848,"journal":{"name":"Proceedings International Parallel and Distributed Processing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2003.1213186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Clustering, or unsupervised classification, has many uses in fields that depend on grouping results from large amount of data, an example being the N-body cosmological simulation in astrophysics. In this paper, we study a particular clustering algorithm used in astrophysics, called HOP, and present a parallel implementation to speed up its current sequential implementation. Our approach first builds in parallel the spatial domain hierarchical data structure, a three-dimensional KD tree. Using a KD tree, the core of the HOP algorithm that searches for the highest density neighbor can be performed using only subsets of the particles and hence the communication cost is reduced. We evaluate our implementation by using data sets from a production cosmological application. The experimental results demonstrate up to 24/spl times/ speedup using 64 processors on three parallel processing machines.
一种用于宇宙模拟的并行HOP聚类算法的设计与评价
聚类,或无监督分类,在依赖于大量数据分组结果的领域有许多用途,例如天体物理学中的n体宇宙学模拟。在本文中,我们研究了天体物理学中使用的一种称为HOP的特定聚类算法,并提出了一种并行实现来加速其当前的顺序实现。我们的方法首先并行构建空间域分层数据结构,即三维KD树。使用KD树,HOP算法的核心是搜索密度最高的邻居,可以只使用粒子的子集来执行,从而降低了通信成本。我们通过使用来自生产宇宙学应用程序的数据集来评估我们的实现。实验结果表明,在三台并行处理机上使用64个处理器,加速速度可达24/spl倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信