Narrow-width SOI devices the role of quantum mechanical space-quantization effects on device performance

S.S. Ahmed, D. Vasileska
{"title":"Narrow-width SOI devices the role of quantum mechanical space-quantization effects on device performance","authors":"S.S. Ahmed, D. Vasileska","doi":"10.1109/NANO.2002.1032238","DOIUrl":null,"url":null,"abstract":"We investigate the role of quantum mechanical space-quantization effects on the operation of a narrow-width SOI device structure. The presence of a two-dimensional carrier confinement gives rise to larger average displacement of the carriers from the interface proper and lower sheet electron density in the channel region. This, in turn, results not only in a significant increase in the threshold voltage but also in pronounced channel width dependency of the drain current. In this work, we have used classical 3D Monte Carlo particle-based simulations. Quantum mechanical space-quantization effects have been accounted for via an effective potential scheme that has been quite successful in describing bandgap widening effect and charge set back from the interface.","PeriodicalId":408575,"journal":{"name":"Proceedings of the 2nd IEEE Conference on Nanotechnology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd IEEE Conference on Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2002.1032238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the role of quantum mechanical space-quantization effects on the operation of a narrow-width SOI device structure. The presence of a two-dimensional carrier confinement gives rise to larger average displacement of the carriers from the interface proper and lower sheet electron density in the channel region. This, in turn, results not only in a significant increase in the threshold voltage but also in pronounced channel width dependency of the drain current. In this work, we have used classical 3D Monte Carlo particle-based simulations. Quantum mechanical space-quantization effects have been accounted for via an effective potential scheme that has been quite successful in describing bandgap widening effect and charge set back from the interface.
窄宽度SOI器件的量子力学空间量子化效应对器件性能的影响
我们研究了量子力学空间量子化效应在窄宽度SOI器件结构运行中的作用。二维载流子约束的存在使得载流子在界面上的平均位移增大,通道区域的电子密度降低。反过来,这不仅会导致阈值电压的显著增加,而且还会导致漏极电流的明显通道宽度依赖性。在这项工作中,我们使用了经典的三维蒙特卡罗粒子模拟。量子力学空间量子化效应是通过一种有效的势方案来解释的,该方案在描述带隙加宽效应和从界面返回的电荷方面非常成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信