Novel Low Thermal Budget CMOS RMG: Performance and Reliability Benchmark Against Conventional High Thermal Budget Gate Stack Solutions

J. Franco, H. Arimura, J. D. Marneffe, S. Brus, R. Ritzenthaler, E. Litta, K. Croes, B. Kaczer, N. Horiguchi
{"title":"Novel Low Thermal Budget CMOS RMG: Performance and Reliability Benchmark Against Conventional High Thermal Budget Gate Stack Solutions","authors":"J. Franco, H. Arimura, J. D. Marneffe, S. Brus, R. Ritzenthaler, E. Litta, K. Croes, B. Kaczer, N. Horiguchi","doi":"10.23919/VLSITechnologyandCir57934.2023.10185317","DOIUrl":null,"url":null,"abstract":"Low thermal budget gate stack fabrication is a key enabler for several upcoming CMOS technology innovations. For transistor stacking in Sequential 3D integrations, top device tiers need to be fabricated at reduced thermal budget [1] to preserve the functionality of the bottom tiers already in place. For monolithic CFET [2] fabrication, in a “RMGlast” flow the high temperature T reliability anneal $(\\sim 850^{\\circ}\\mathrm{C},\\sim 1.5\\mathrm{~s}$. spike) customarily used in conventional HKMG stacks to cure dielectric defects [3] can degrade the contact performance; conversely, moving the RMG module to earlier in the flow (\"RMG-first”) would impose thermal stability requirements for the HKMG stacks to endure the epi and contact module thermal budget (max $\\mathrm{T}\\sim 525^{\\circ}\\mathrm{C}$ for several hours), which would be particularly challenging for the tight effective Work Function (eWF) control [4] required by multi- $V_{\\text{th}}$ technologies. The development of novel low thermal budget gate stack solutions (Fig. 1) with competitive performance and reliability as compared to state-of-the-art RMG discussed here addresses these concerns.","PeriodicalId":317958,"journal":{"name":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low thermal budget gate stack fabrication is a key enabler for several upcoming CMOS technology innovations. For transistor stacking in Sequential 3D integrations, top device tiers need to be fabricated at reduced thermal budget [1] to preserve the functionality of the bottom tiers already in place. For monolithic CFET [2] fabrication, in a “RMGlast” flow the high temperature T reliability anneal $(\sim 850^{\circ}\mathrm{C},\sim 1.5\mathrm{~s}$. spike) customarily used in conventional HKMG stacks to cure dielectric defects [3] can degrade the contact performance; conversely, moving the RMG module to earlier in the flow ("RMG-first”) would impose thermal stability requirements for the HKMG stacks to endure the epi and contact module thermal budget (max $\mathrm{T}\sim 525^{\circ}\mathrm{C}$ for several hours), which would be particularly challenging for the tight effective Work Function (eWF) control [4] required by multi- $V_{\text{th}}$ technologies. The development of novel low thermal budget gate stack solutions (Fig. 1) with competitive performance and reliability as compared to state-of-the-art RMG discussed here addresses these concerns.
新型低热预算CMOS RMG:相对于传统高热预算栅极堆栈解决方案的性能和可靠性基准
低热预算栅极堆栈制造是几个即将到来的CMOS技术创新的关键推动因素。对于顺序3D集成中的晶体管堆叠,需要在减少热预算的情况下制造顶层器件层[1],以保留底层的功能。对于单片CFET[2]的制造,在“RMGlast”流中,高温T可靠性退火$(\sim 850^{\circ}\ mathm {C},\sim 1.5\ mathm {~s}$。传统HKMG电堆中用于修复介电缺陷的尖峰(spike)[3]会降低接触性能;相反,将RMG模块移动到流的早期(“RMG优先”)将对HKMG堆栈施加热稳定性要求,以承受epi和接触模块热预算(max $\ mathm {T}\sim 525^{\circ}\ mathm {C}$持续数小时),这对于多$V_{\text{th}}$技术所需的严格有效功函数(eWF)控制[4]尤其具有挑战性。与本文讨论的最先进的RMG相比,具有竞争力的性能和可靠性的新型低热预算门堆解决方案(图1)的开发解决了这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信