B. K. Esfeh, M. Masselus, N. Planes, M. Haond, J. Raskin, D. Flandre, V. Kilchytska
{"title":"28 FDSOI analog and RF Figures of Merit at cryogenic temperatures","authors":"B. K. Esfeh, M. Masselus, N. Planes, M. Haond, J. Raskin, D. Flandre, V. Kilchytska","doi":"10.1109/ULIS.2018.8354735","DOIUrl":null,"url":null,"abstract":"This work presents a detailed characterization of 28 nm FDSOI CMOS process at cryogenic temperatures. Electrostatic, Analog and RF Figures of Merit (FoM) are studied for the first time to our best knowledge. At cryogenic temperatures, 20–70% enhancement of drain current, Id, and maximum transconductance, gm_max, values as well as up to 100 GHz increase of cut-off frequency, fT, are demonstrated. Temperature behavior of analog and RF FoMs is discussed in terms of mobility and series resistance effect. This first study suggests 28FDSOI as a good contender for future read-out electronics around qubits.","PeriodicalId":383788,"journal":{"name":"2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULIS.2018.8354735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This work presents a detailed characterization of 28 nm FDSOI CMOS process at cryogenic temperatures. Electrostatic, Analog and RF Figures of Merit (FoM) are studied for the first time to our best knowledge. At cryogenic temperatures, 20–70% enhancement of drain current, Id, and maximum transconductance, gm_max, values as well as up to 100 GHz increase of cut-off frequency, fT, are demonstrated. Temperature behavior of analog and RF FoMs is discussed in terms of mobility and series resistance effect. This first study suggests 28FDSOI as a good contender for future read-out electronics around qubits.