{"title":"Half-space type theorem for translating solitons of the mean curvature flow in Euclidean space","authors":"Daehwan Kim, Juncheol Pyo","doi":"10.1090/BPROC/67","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we determine which half-space contains a complete translating soliton of the mean curvature flow and it is related to the well-known half-space theorem for minimal surfaces. We prove that a complete translating soliton does not exist with respect to the velocity <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal v\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathrm {v}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in a closed half-space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H Subscript normal v overTilde Baseline equals left-brace x element-of double-struck upper R Superscript n plus 1 Baseline bar mathematical left-angle x comma normal v overTilde mathematical right-angle less-than-or-equal-to 0 right-brace\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:mo>=</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo>∣<!-- ∣ --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {H}_{\\widetilde {{\\mathrm {v}}}}= \\{ x \\in \\mathbb {R}^{n+1} \\mid \\langle x, \\widetilde {{\\mathrm {v}}}\\rangle \\leq 0 \\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mathematical left-angle normal v comma normal v overTilde mathematical right-angle greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\langle {\\mathrm {v}}, \\widetilde {{\\mathrm {v}}} \\rangle > 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, whereas in a half-space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H Subscript normal v overTilde\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {H}_{\\widetilde {{\\mathrm {v}}}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mathematical left-angle normal v comma normal v overTilde mathematical right-angle less-than-or-equal-to 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\langle {\\mathrm {v}}, \\widetilde {{\\mathrm {v}}} \\rangle \\leq 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, a complete translating soliton can be found. In addition, we extend this property to cones: there are no complete translating solitons with respect to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal v\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathrm {v}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in a right circular cone <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript normal v comma a Baseline equals left-brace x element-of double-struck upper R Superscript n plus 1 Baseline bar mathematical left-angle StartFraction x Over double-vertical-bar x double-vertical-bar EndFraction comma normal v mathematical right-angle less-than-or-equal-to a greater-than 1 right-brace\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>,</mml:mo>\n <mml:mi>a</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>=</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo>∣<!-- ∣ --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mfrac>\n <mml:mi>x</mml:mi>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n </mml:mrow>\n </mml:mfrac>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>a</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C_{ {{\\mathrm {v}}}, a}=\\{ x \\in \\mathbb {R}^{n+1} \\mid \\langle \\frac {x}{\\|x\\|} , {{\\mathrm {v}}} \\rangle \\leq a > 1 \\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/BPROC/67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we determine which half-space contains a complete translating soliton of the mean curvature flow and it is related to the well-known half-space theorem for minimal surfaces. We prove that a complete translating soliton does not exist with respect to the velocity v{\mathrm {v}} in a closed half-space Hv~={x∈Rn+1∣⟨x,v~⟩≤0}\mathcal {H}_{\widetilde {{\mathrm {v}}}}= \{ x \in \mathbb {R}^{n+1} \mid \langle x, \widetilde {{\mathrm {v}}}\rangle \leq 0 \} for ⟨v,v~⟩>0\langle {\mathrm {v}}, \widetilde {{\mathrm {v}}} \rangle > 0, whereas in a half-space Hv~\mathcal {H}_{\widetilde {{\mathrm {v}}}}, ⟨v,v~⟩≤0\langle {\mathrm {v}}, \widetilde {{\mathrm {v}}} \rangle \leq 0, a complete translating soliton can be found. In addition, we extend this property to cones: there are no complete translating solitons with respect to v{\mathrm {v}} in a right circular cone Cv,a={x∈Rn+1∣⟨x‖x‖,v⟩≤a>1}C_{ {{\mathrm {v}}}, a}=\{ x \in \mathbb {R}^{n+1} \mid \langle \frac {x}{\|x\|} , {{\mathrm {v}}} \rangle \leq a > 1 \}.