Stabilization of Nonlinear Planer Systems using Homogeneous Eigenvalues

H. Nakamura, G. Nishida, H. Nishitani, Y. Yamashita
{"title":"Stabilization of Nonlinear Planer Systems using Homogeneous Eigenvalues","authors":"H. Nakamura, G. Nishida, H. Nishitani, Y. Yamashita","doi":"10.1109/SICE.2006.315106","DOIUrl":null,"url":null,"abstract":"Homogeneous systems play important roles in nonlinear control theory. We proposed homogeneous eigenvalues, and provided sufficient conditions for asymptotic stability using homogeneous eigenvalue analysis in the previous papers. In this paper, we prove that there exists a homogeneous system which has uncountable infinite homogeneous eigenvalues. Moreover, we introduce the definition of the oscillation in nonlinear systems and prove the condition for oscillation. Finally, we construct the controller which does not oscillate each solution of the controlled system","PeriodicalId":309260,"journal":{"name":"2006 SICE-ICASE International Joint Conference","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 SICE-ICASE International Joint Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2006.315106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Homogeneous systems play important roles in nonlinear control theory. We proposed homogeneous eigenvalues, and provided sufficient conditions for asymptotic stability using homogeneous eigenvalue analysis in the previous papers. In this paper, we prove that there exists a homogeneous system which has uncountable infinite homogeneous eigenvalues. Moreover, we introduce the definition of the oscillation in nonlinear systems and prove the condition for oscillation. Finally, we construct the controller which does not oscillate each solution of the controlled system
齐次特征值非线性平面系统的镇定
齐次系统在非线性控制理论中占有重要地位。在以往的文章中,我们提出了齐次特征值,并利用齐次特征值分析给出了渐近稳定的充分条件。本文证明了存在一个具有无数个齐次特征值的齐次系统。此外,我们引入了非线性系统振动的定义,并证明了振动的条件。最后,我们构造了不使被控系统的每个解产生振荡的控制器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信